@@ -0,0 +1,2 @@ |
||
| 1 |
+faces.csv |
|
| 2 |
+photos/ |
@@ -0,0 +1,124 @@ |
||
| 1 |
+import Tkinter as tk |
|
| 2 |
+import cv2, sys, time, os, math |
|
| 3 |
+from PIL import Image, ImageTk |
|
| 4 |
+import numpy as numpy |
|
| 5 |
+ |
|
| 6 |
+from os import listdir |
|
| 7 |
+from os.path import isfile, join |
|
| 8 |
+ |
|
| 9 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 10 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 11 |
+# Set the framerate ( not sure this does anything! ) |
|
| 12 |
+os.system('v4l2-ctl -p 4')
|
|
| 13 |
+ |
|
| 14 |
+width, height = 320, 240 |
|
| 15 |
+cap = cv2.VideoCapture(0) |
|
| 16 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width) |
|
| 17 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height) |
|
| 18 |
+ |
|
| 19 |
+cascPath = '/home/pi/lbpcascade_frontalface.xml' |
|
| 20 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 21 |
+ |
|
| 22 |
+root = tk.Tk() |
|
| 23 |
+root.attributes("-fullscreen", True)
|
|
| 24 |
+root.bind('<Escape>', lambda e: root.quit())
|
|
| 25 |
+ |
|
| 26 |
+lmain = tk.Label(root) |
|
| 27 |
+lmain.pack() |
|
| 28 |
+ |
|
| 29 |
+last_image_faces = [] |
|
| 30 |
+ |
|
| 31 |
+def show_frame(): |
|
| 32 |
+ _, frame = cap.read() |
|
| 33 |
+ frame = cv2.flip(frame, 1) |
|
| 34 |
+ frame = faceDetect(frame) |
|
| 35 |
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA) |
|
| 36 |
+ img = Image.fromarray(cv2image) |
|
| 37 |
+ imgtk = ImageTk.PhotoImage(image=img) |
|
| 38 |
+ lmain.imgtk = imgtk |
|
| 39 |
+ lmain.configure(image=imgtk) |
|
| 40 |
+ lmain.after(1, show_frame) |
|
| 41 |
+ |
|
| 42 |
+def faceDetect(frame): |
|
| 43 |
+ |
|
| 44 |
+ # Do face detection |
|
| 45 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 46 |
+ |
|
| 47 |
+ #Slower method |
|
| 48 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 49 |
+ gray = cv2.equalizeHist( gray ) |
|
| 50 |
+ faces = faceCascade.detectMultiScale( |
|
| 51 |
+ gray, |
|
| 52 |
+ scaleFactor=1.1, |
|
| 53 |
+ minNeighbors=4, |
|
| 54 |
+ minSize=(20, 20), |
|
| 55 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 56 |
+ ) |
|
| 57 |
+ |
|
| 58 |
+ print "Found {0} faces!".format(len(faces))
|
|
| 59 |
+ global last_image_faces |
|
| 60 |
+ image_faces = [] |
|
| 61 |
+ |
|
| 62 |
+ for (x, y, w, h) in faces: |
|
| 63 |
+ # Draw a green rectangle around the face |
|
| 64 |
+ face = frame[y:(y+h), x:(x+w)] |
|
| 65 |
+ center_x = x + (w/2) |
|
| 66 |
+ center_y = y + (h/2) |
|
| 67 |
+ center = [center_x, center_y] |
|
| 68 |
+ image_faces.append(center) |
|
| 69 |
+ tracking = False |
|
| 70 |
+ for pos in last_image_faces: |
|
| 71 |
+ #dist = sqrt( (center_x - pos[0])**2 + (center_y - pos[1])**2 ) |
|
| 72 |
+ dist = math.hypot(center_x - pos[0], center_y - pos[1]) |
|
| 73 |
+ print("Distance from last point " + str(dist))
|
|
| 74 |
+ if dist < 30: |
|
| 75 |
+ tracking = True |
|
| 76 |
+ if tracking == False: |
|
| 77 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
| 78 |
+ recognizeFace(face) |
|
| 79 |
+ else: |
|
| 80 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
| 81 |
+ break |
|
| 82 |
+ last_image_faces = image_faces |
|
| 83 |
+ return frame |
|
| 84 |
+ |
|
| 85 |
+def recognizeFace(face): |
|
| 86 |
+ print("Searching Face database...")
|
|
| 87 |
+ face = cv2.cvtColor(face, cv2.COLOR_BGR2RGBA) |
|
| 88 |
+ count = 0 |
|
| 89 |
+ match_found = False |
|
| 90 |
+ for f in face_db: |
|
| 91 |
+ count = count + 1 |
|
| 92 |
+ # Initiate SIFT detector |
|
| 93 |
+ orb = cv2.ORB() |
|
| 94 |
+ # find the keypoints and descriptors with SIFT |
|
| 95 |
+ kp1, des1 = orb.detectAndCompute(face,None) |
|
| 96 |
+ kp2, des2 = orb.detectAndCompute(f,None) |
|
| 97 |
+ # create BFMatcher object |
|
| 98 |
+ bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) |
|
| 99 |
+ # Match descriptors. |
|
| 100 |
+ matches = bf.match(des1,des2) |
|
| 101 |
+ if len(matches) > 0: |
|
| 102 |
+ # found match |
|
| 103 |
+ print("Match Found! (" + str(count) +")")
|
|
| 104 |
+ match_found = True |
|
| 105 |
+ break |
|
| 106 |
+ if match_found == False: |
|
| 107 |
+ # Save picture |
|
| 108 |
+ print("No match found! Searched " + str(count) + " records. Saving image.")
|
|
| 109 |
+ cv2.imwrite("/home/pi/photos/faces/face-" + str(len(face_db)) + ".jpg", face)
|
|
| 110 |
+ loadFaceDB() |
|
| 111 |
+ |
|
| 112 |
+def loadFaceDB(): |
|
| 113 |
+ # Load faces |
|
| 114 |
+ face_db_path='/home/pi/photos/faces' |
|
| 115 |
+ onlyfiles = [ f for f in listdir(face_db_path) if isfile(join(face_db_path,f)) ] |
|
| 116 |
+ global face_db |
|
| 117 |
+ face_db = numpy.empty(len(onlyfiles), dtype=object) |
|
| 118 |
+ for n in range(0, len(onlyfiles)): |
|
| 119 |
+ face_db[n] = cv2.imread( join(face_db_path,onlyfiles[n]) ) |
|
| 120 |
+ |
|
| 121 |
+ |
|
| 122 |
+loadFaceDB() |
|
| 123 |
+show_frame() |
|
| 124 |
+root.mainloop() |
@@ -0,0 +1,122 @@ |
||
| 1 |
+import Tkinter as tk |
|
| 2 |
+import cv2, sys, time, os, math |
|
| 3 |
+from PIL import Image, ImageTk |
|
| 4 |
+import numpy as numpy |
|
| 5 |
+ |
|
| 6 |
+ |
|
| 7 |
+from SimpleCV import Color, np |
|
| 8 |
+from SimpleCV import Image as SimpleImage |
|
| 9 |
+ |
|
| 10 |
+from os import listdir |
|
| 11 |
+from os.path import isfile, join |
|
| 12 |
+ |
|
| 13 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 14 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 15 |
+# Set the framerate ( not sure this does anything! ) |
|
| 16 |
+os.system('v4l2-ctl -p 4')
|
|
| 17 |
+ |
|
| 18 |
+width, height = 320, 240 |
|
| 19 |
+cap = cv2.VideoCapture(0) |
|
| 20 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width) |
|
| 21 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height) |
|
| 22 |
+ |
|
| 23 |
+cascPath = '/home/pi/lbpcascade_frontalface.xml' |
|
| 24 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 25 |
+ |
|
| 26 |
+root = tk.Tk() |
|
| 27 |
+root.attributes("-fullscreen", True)
|
|
| 28 |
+root.bind('<Escape>', lambda e: root.quit())
|
|
| 29 |
+ |
|
| 30 |
+lmain = tk.Label(root) |
|
| 31 |
+lmain.pack() |
|
| 32 |
+ |
|
| 33 |
+last_image_faces = [] |
|
| 34 |
+ |
|
| 35 |
+def show_frame(): |
|
| 36 |
+ _, frame = cap.read() |
|
| 37 |
+ frame = cv2.flip(frame, 1) |
|
| 38 |
+ frame = faceDetect(frame) |
|
| 39 |
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA) |
|
| 40 |
+ img = Image.fromarray(cv2image) |
|
| 41 |
+ imgtk = ImageTk.PhotoImage(image=img) |
|
| 42 |
+ lmain.imgtk = imgtk |
|
| 43 |
+ lmain.configure(image=imgtk) |
|
| 44 |
+ lmain.after(1, show_frame) |
|
| 45 |
+ |
|
| 46 |
+def faceDetect(frame): |
|
| 47 |
+ |
|
| 48 |
+ # Do face detection |
|
| 49 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 50 |
+ |
|
| 51 |
+ #Slower method |
|
| 52 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 53 |
+ gray = cv2.equalizeHist( gray ) |
|
| 54 |
+ faces = faceCascade.detectMultiScale( |
|
| 55 |
+ gray, |
|
| 56 |
+ scaleFactor=1.1, |
|
| 57 |
+ minNeighbors=4, |
|
| 58 |
+ minSize=(20, 20), |
|
| 59 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 60 |
+ ) |
|
| 61 |
+ |
|
| 62 |
+ print "Found {0} faces!".format(len(faces))
|
|
| 63 |
+ global last_image_faces |
|
| 64 |
+ image_faces = [] |
|
| 65 |
+ |
|
| 66 |
+ for (x, y, w, h) in faces: |
|
| 67 |
+ # Draw a green rectangle around the face |
|
| 68 |
+ face = frame[y:(y+h), x:(x+w)] |
|
| 69 |
+ center_x = x + (w/2) |
|
| 70 |
+ center_y = y + (h/2) |
|
| 71 |
+ center = [center_x, center_y] |
|
| 72 |
+ image_faces.append(center) |
|
| 73 |
+ tracking = False |
|
| 74 |
+ for pos in last_image_faces: |
|
| 75 |
+ #dist = sqrt( (center_x - pos[0])**2 + (center_y - pos[1])**2 ) |
|
| 76 |
+ dist = math.hypot(center_x - pos[0], center_y - pos[1]) |
|
| 77 |
+ print("Distance from last point " + str(dist))
|
|
| 78 |
+ if dist < 30: |
|
| 79 |
+ tracking = True |
|
| 80 |
+ if tracking == False: |
|
| 81 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
| 82 |
+ recognizeFace(face) |
|
| 83 |
+ else: |
|
| 84 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
| 85 |
+ break |
|
| 86 |
+ last_image_faces = image_faces |
|
| 87 |
+ return frame |
|
| 88 |
+ |
|
| 89 |
+def recognizeFace(face): |
|
| 90 |
+ face = cv2.cvtColor(face, cv2.COLOR_BGR2RGBA) |
|
| 91 |
+ count = 0 |
|
| 92 |
+ match_found = False |
|
| 93 |
+ for f in face_db: |
|
| 94 |
+ count = count + 1 |
|
| 95 |
+ template = SimpleImage(f) |
|
| 96 |
+ cv_face = SimpleImage(face) |
|
| 97 |
+ print("Scaning DB face " + str(count))
|
|
| 98 |
+ keypoints = cv_face.drawSIFTKeyPointMatch(template,distance=50) |
|
| 99 |
+ if keypoints: |
|
| 100 |
+ # found match |
|
| 101 |
+ print("Match Found! (" + str(count) +")")
|
|
| 102 |
+ match_found = True |
|
| 103 |
+ break |
|
| 104 |
+ if match_found == False: |
|
| 105 |
+ # Save picture |
|
| 106 |
+ print("No match found! Searched " + str(count) + " records. Saving image.")
|
|
| 107 |
+ cv2.imwrite("/home/pi/photos/faces/face-" + str(len(face_db)) + ".jpg", face)
|
|
| 108 |
+ loadFaceDB() |
|
| 109 |
+ |
|
| 110 |
+def loadFaceDB(): |
|
| 111 |
+ # Load faces |
|
| 112 |
+ face_db_path='/home/pi/photos/faces' |
|
| 113 |
+ onlyfiles = [ f for f in listdir(face_db_path) if isfile(join(face_db_path,f)) ] |
|
| 114 |
+ global face_db |
|
| 115 |
+ face_db = numpy.empty(len(onlyfiles), dtype=object) |
|
| 116 |
+ for n in range(0, len(onlyfiles)): |
|
| 117 |
+ face_db[n] = cv2.imread( join(face_db_path,onlyfiles[n]) ) |
|
| 118 |
+ |
|
| 119 |
+ |
|
| 120 |
+loadFaceDB() |
|
| 121 |
+show_frame() |
|
| 122 |
+root.mainloop() |
@@ -0,0 +1,132 @@ |
||
| 1 |
+# FACE CAMERA |
|
| 2 |
+ |
|
| 3 |
+import Tkinter as tk |
|
| 4 |
+import cv2, sys, time, os, math |
|
| 5 |
+from PIL import Image, ImageTk |
|
| 6 |
+import numpy as numpy |
|
| 7 |
+ |
|
| 8 |
+from os import listdir |
|
| 9 |
+from os.path import isfile, join |
|
| 10 |
+ |
|
| 11 |
+import RPi.GPIO as GPIO |
|
| 12 |
+ |
|
| 13 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 14 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 15 |
+# Set the framerate ( not sure this does anything! ) |
|
| 16 |
+os.system('v4l2-ctl -p 4')
|
|
| 17 |
+ |
|
| 18 |
+width, height = 320, 240 |
|
| 19 |
+cap = cv2.VideoCapture(0) |
|
| 20 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width) |
|
| 21 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height) |
|
| 22 |
+ |
|
| 23 |
+cascPath = '/home/pi/lbpcascade_frontalface.xml' |
|
| 24 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 25 |
+ |
|
| 26 |
+root = tk.Tk() |
|
| 27 |
+root.attributes("-fullscreen", True)
|
|
| 28 |
+root.bind('<Escape>', lambda e: root.quit())
|
|
| 29 |
+ |
|
| 30 |
+lmain = tk.Label(root) |
|
| 31 |
+lmain.pack() |
|
| 32 |
+ |
|
| 33 |
+last_image_faces = [] |
|
| 34 |
+saved = False |
|
| 35 |
+ |
|
| 36 |
+GPIO.setmode(GPIO.BOARD) |
|
| 37 |
+GPIO.setup(12, GPIO.IN, pull_up_down = GPIO.PUD_UP) |
|
| 38 |
+GPIO.setup(16, GPIO.IN, pull_up_down = GPIO.PUD_UP) |
|
| 39 |
+GPIO.setup(18, GPIO.IN, pull_up_down = GPIO.PUD_UP) |
|
| 40 |
+ |
|
| 41 |
+ |
|
| 42 |
+ |
|
| 43 |
+def show_frame(): |
|
| 44 |
+ _, frame = cap.read() |
|
| 45 |
+ frame = cv2.flip(frame, 1) |
|
| 46 |
+ frame = faceDetect(frame) |
|
| 47 |
+ #frame = cv2.resize(frame, (320,240)) |
|
| 48 |
+ buttonPress() |
|
| 49 |
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA) |
|
| 50 |
+ img = Image.fromarray(cv2image) |
|
| 51 |
+ imgtk = ImageTk.PhotoImage(image=img) |
|
| 52 |
+ lmain.imgtk = imgtk |
|
| 53 |
+ lmain.configure(image=imgtk) |
|
| 54 |
+ lmain.after(1, show_frame) |
|
| 55 |
+ |
|
| 56 |
+def faceDetect(frame): |
|
| 57 |
+ |
|
| 58 |
+ # Do face detection |
|
| 59 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 60 |
+ |
|
| 61 |
+ #Slower method |
|
| 62 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 63 |
+ gray = cv2.equalizeHist( gray ) |
|
| 64 |
+ faces = faceCascade.detectMultiScale( |
|
| 65 |
+ gray, |
|
| 66 |
+ scaleFactor=1.1, |
|
| 67 |
+ minNeighbors=4, |
|
| 68 |
+ minSize=(20, 20), |
|
| 69 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 70 |
+ ) |
|
| 71 |
+ |
|
| 72 |
+ #print "Found {0} faces!".format(len(faces))
|
|
| 73 |
+ global last_image_faces |
|
| 74 |
+ image_faces = [] |
|
| 75 |
+ |
|
| 76 |
+ for (x, y, w, h) in faces: |
|
| 77 |
+ center_x = x + (w/2) |
|
| 78 |
+ center_y = y + (h/2) |
|
| 79 |
+ start_y = center_y - 80 |
|
| 80 |
+ start_x = center_x - 80 |
|
| 81 |
+ face_crop = frame[start_y:(start_y+160), start_x:(start_x+160)] |
|
| 82 |
+ image_faces.append(face_crop) |
|
| 83 |
+ # Draw a green rectangle around the face |
|
| 84 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
| 85 |
+ last_image_faces = image_faces |
|
| 86 |
+ return frame |
|
| 87 |
+ |
|
| 88 |
+def saveFace(): |
|
| 89 |
+ global last_image_faces |
|
| 90 |
+ for face in last_image_faces: |
|
| 91 |
+ face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) |
|
| 92 |
+ face = cv2.equalizeHist(face) |
|
| 93 |
+ cv2.imwrite("/home/pi/photos/faces/face-" + str(len(face_db)) + ".jpg", face)
|
|
| 94 |
+ loadFaceDB() |
|
| 95 |
+ |
|
| 96 |
+def buttonPress(): |
|
| 97 |
+ global saved |
|
| 98 |
+ if(GPIO.input(12) == 0): |
|
| 99 |
+ if saved == False: |
|
| 100 |
+ saveFace() |
|
| 101 |
+ saved = True |
|
| 102 |
+ print("Image Saved")
|
|
| 103 |
+ else: |
|
| 104 |
+ saved = False |
|
| 105 |
+ if(GPIO.input(16) == 0): |
|
| 106 |
+ if saved == False: |
|
| 107 |
+ saveFace() |
|
| 108 |
+ saved = True |
|
| 109 |
+ print("Image Saved")
|
|
| 110 |
+ else: |
|
| 111 |
+ saved = False |
|
| 112 |
+ if(GPIO.input(18) == 0): |
|
| 113 |
+ if saved == False: |
|
| 114 |
+ saveFace() |
|
| 115 |
+ saved = True |
|
| 116 |
+ print("Image Saved")
|
|
| 117 |
+ else: |
|
| 118 |
+ saved = False |
|
| 119 |
+ |
|
| 120 |
+def loadFaceDB(): |
|
| 121 |
+ # Load faces |
|
| 122 |
+ face_db_path='/home/pi/photos/faces' |
|
| 123 |
+ onlyfiles = [ f for f in listdir(face_db_path) if isfile(join(face_db_path,f)) ] |
|
| 124 |
+ global face_db |
|
| 125 |
+ face_db = numpy.empty(len(onlyfiles), dtype=object) |
|
| 126 |
+ for n in range(0, len(onlyfiles)): |
|
| 127 |
+ face_db[n] = cv2.imread( join(face_db_path,onlyfiles[n]) ) |
|
| 128 |
+ |
|
| 129 |
+loadFaceDB() |
|
| 130 |
+show_frame() |
|
| 131 |
+root.mainloop() |
|
| 132 |
+GPIO.cleanup() |
@@ -0,0 +1,129 @@ |
||
| 1 |
+import Tkinter as tk |
|
| 2 |
+import cv2, sys, time, os, math |
|
| 3 |
+from PIL import Image, ImageTk |
|
| 4 |
+import numpy as numpy |
|
| 5 |
+ |
|
| 6 |
+from os import listdir |
|
| 7 |
+from os.path import isfile, join |
|
| 8 |
+ |
|
| 9 |
+import RPi.GPIO as GPIO |
|
| 10 |
+ |
|
| 11 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 12 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 13 |
+# Set the framerate ( not sure this does anything! ) |
|
| 14 |
+os.system('v4l2-ctl -p 4')
|
|
| 15 |
+ |
|
| 16 |
+width, height = 320, 240 |
|
| 17 |
+cap = cv2.VideoCapture(0) |
|
| 18 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width) |
|
| 19 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height) |
|
| 20 |
+ |
|
| 21 |
+cascPath = '/home/pi/lbpcascade_frontalface.xml' |
|
| 22 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 23 |
+ |
|
| 24 |
+root = tk.Tk() |
|
| 25 |
+root.attributes("-fullscreen", True)
|
|
| 26 |
+root.bind('<Escape>', lambda e: root.quit())
|
|
| 27 |
+ |
|
| 28 |
+lmain = tk.Label(root) |
|
| 29 |
+lmain.pack() |
|
| 30 |
+ |
|
| 31 |
+last_image_faces = [] |
|
| 32 |
+saved = False |
|
| 33 |
+ |
|
| 34 |
+GPIO.setmode(GPIO.BOARD) |
|
| 35 |
+GPIO.setup(12, GPIO.IN, pull_up_down = GPIO.PUD_UP) |
|
| 36 |
+GPIO.setup(16, GPIO.IN, pull_up_down = GPIO.PUD_UP) |
|
| 37 |
+GPIO.setup(18, GPIO.IN, pull_up_down = GPIO.PUD_UP) |
|
| 38 |
+ |
|
| 39 |
+ |
|
| 40 |
+ |
|
| 41 |
+def show_frame(): |
|
| 42 |
+ _, frame = cap.read() |
|
| 43 |
+ frame = cv2.flip(frame, 1) |
|
| 44 |
+ frame = faceDetect(frame) |
|
| 45 |
+ #frame = cv2.resize(frame, (320,240)) |
|
| 46 |
+ buttonPress() |
|
| 47 |
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA) |
|
| 48 |
+ img = Image.fromarray(cv2image) |
|
| 49 |
+ imgtk = ImageTk.PhotoImage(image=img) |
|
| 50 |
+ lmain.imgtk = imgtk |
|
| 51 |
+ lmain.configure(image=imgtk) |
|
| 52 |
+ lmain.after(1, show_frame) |
|
| 53 |
+ |
|
| 54 |
+def faceDetect(frame): |
|
| 55 |
+ |
|
| 56 |
+ # Do face detection |
|
| 57 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 58 |
+ |
|
| 59 |
+ #Slower method |
|
| 60 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 61 |
+ gray = cv2.equalizeHist( gray ) |
|
| 62 |
+ faces = faceCascade.detectMultiScale( |
|
| 63 |
+ gray, |
|
| 64 |
+ scaleFactor=1.1, |
|
| 65 |
+ minNeighbors=4, |
|
| 66 |
+ minSize=(20, 20), |
|
| 67 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 68 |
+ ) |
|
| 69 |
+ |
|
| 70 |
+ #print "Found {0} faces!".format(len(faces))
|
|
| 71 |
+ global last_image_faces |
|
| 72 |
+ image_faces = [] |
|
| 73 |
+ |
|
| 74 |
+ for (x, y, w, h) in faces: |
|
| 75 |
+ center_x = x + (w/2) |
|
| 76 |
+ center_y = y + (h/2) |
|
| 77 |
+ start_y = center_y - 40 |
|
| 78 |
+ start_x = center_x - 40 |
|
| 79 |
+ face = gray[y:(y+h), x:(x+w)] |
|
| 80 |
+ image_faces.append(face) |
|
| 81 |
+ # Draw a green rectangle around the face |
|
| 82 |
+ cv2.rectangle(frame, (x, y), (start_x+w, start_y+h), (0, 255, 0), 2) |
|
| 83 |
+ last_image_faces = image_faces |
|
| 84 |
+ return frame |
|
| 85 |
+ |
|
| 86 |
+def saveFace(): |
|
| 87 |
+ global last_image_faces |
|
| 88 |
+ for face in last_image_faces: |
|
| 89 |
+ face = cv2.resize(face, (120, 120)) |
|
| 90 |
+ face = cv2.equalizeHist(face) |
|
| 91 |
+ cv2.imwrite("/home/pi/photos/faces/face-" + str(len(face_db) + 1) + ".jpg", face)
|
|
| 92 |
+ print("Saved image " + str(len(face_db)))
|
|
| 93 |
+ loadFaceDB() |
|
| 94 |
+ |
|
| 95 |
+def buttonPress(): |
|
| 96 |
+ global saved |
|
| 97 |
+ if(GPIO.input(12) == 0): |
|
| 98 |
+ if saved == False: |
|
| 99 |
+ saveFace() |
|
| 100 |
+ saved = True |
|
| 101 |
+ |
|
| 102 |
+ else: |
|
| 103 |
+ saved = False |
|
| 104 |
+ if(GPIO.input(16) == 0): |
|
| 105 |
+ if saved == False: |
|
| 106 |
+ saveFace() |
|
| 107 |
+ saved = True |
|
| 108 |
+ else: |
|
| 109 |
+ saved = False |
|
| 110 |
+ if(GPIO.input(18) == 0): |
|
| 111 |
+ if saved == False: |
|
| 112 |
+ saveFace() |
|
| 113 |
+ saved = True |
|
| 114 |
+ else: |
|
| 115 |
+ saved = False |
|
| 116 |
+ |
|
| 117 |
+def loadFaceDB(): |
|
| 118 |
+ # Load faces |
|
| 119 |
+ face_db_path='/home/pi/photos/faces' |
|
| 120 |
+ onlyfiles = [ f for f in listdir(face_db_path) if isfile(join(face_db_path,f)) ] |
|
| 121 |
+ global face_db |
|
| 122 |
+ face_db = numpy.empty(len(onlyfiles), dtype=object) |
|
| 123 |
+ for n in range(0, len(onlyfiles)): |
|
| 124 |
+ face_db[n] = cv2.imread( join(face_db_path,onlyfiles[n]) ) |
|
| 125 |
+ |
|
| 126 |
+loadFaceDB() |
|
| 127 |
+show_frame() |
|
| 128 |
+root.mainloop() |
|
| 129 |
+GPIO.cleanup() |
@@ -0,0 +1,217 @@ |
||
| 1 |
+#FACE RECOGNIZER |
|
| 2 |
+ |
|
| 3 |
+import Tkinter as tk |
|
| 4 |
+import cv2, sys, time, os, math |
|
| 5 |
+from PIL import Image, ImageTk |
|
| 6 |
+import numpy as numpy |
|
| 7 |
+import pprint |
|
| 8 |
+import random |
|
| 9 |
+import math |
|
| 10 |
+ |
|
| 11 |
+from os import listdir |
|
| 12 |
+from os.path import isfile, join |
|
| 13 |
+ |
|
| 14 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 15 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 16 |
+# Set the framerate ( not sure this does anything! ) |
|
| 17 |
+os.system('v4l2-ctl -p 4')
|
|
| 18 |
+ |
|
| 19 |
+width, height = 320, 240 |
|
| 20 |
+cap = cv2.VideoCapture(0) |
|
| 21 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width) |
|
| 22 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height) |
|
| 23 |
+ |
|
| 24 |
+cascPath = '/home/pi/lbpcascade_frontalface.xml' |
|
| 25 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 26 |
+ |
|
| 27 |
+root = tk.Tk() |
|
| 28 |
+root.attributes("-fullscreen", True)
|
|
| 29 |
+root.bind('<Escape>', lambda e: root.quit())
|
|
| 30 |
+ |
|
| 31 |
+lmain = tk.Label(root) |
|
| 32 |
+lmain.pack() |
|
| 33 |
+ |
|
| 34 |
+last_image_faces = [] |
|
| 35 |
+users = [] |
|
| 36 |
+ |
|
| 37 |
+font = cv2.FONT_HERSHEY_COMPLEX_SMALL |
|
| 38 |
+ |
|
| 39 |
+ |
|
| 40 |
+ |
|
| 41 |
+def show_frame(): |
|
| 42 |
+ _, frame = cap.read() |
|
| 43 |
+ frame = cv2.flip(frame, 1) |
|
| 44 |
+ frame = faceDetect(frame) |
|
| 45 |
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA) |
|
| 46 |
+ img = Image.fromarray(cv2image) |
|
| 47 |
+ imgtk = ImageTk.PhotoImage(image=img) |
|
| 48 |
+ lmain.imgtk = imgtk |
|
| 49 |
+ lmain.configure(image=imgtk) |
|
| 50 |
+ lmain.after(1, show_frame) |
|
| 51 |
+ |
|
| 52 |
+def faceDetect(frame): |
|
| 53 |
+ |
|
| 54 |
+ # Do face detection |
|
| 55 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 56 |
+ |
|
| 57 |
+ #Slower method |
|
| 58 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 59 |
+ gray = cv2.equalizeHist( gray ) |
|
| 60 |
+ faces = faceCascade.detectMultiScale( |
|
| 61 |
+ gray, |
|
| 62 |
+ scaleFactor=1.1, |
|
| 63 |
+ minNeighbors=4, |
|
| 64 |
+ minSize=(20, 20), |
|
| 65 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 66 |
+ ) |
|
| 67 |
+ |
|
| 68 |
+ print "Found {0} faces!".format(len(faces))
|
|
| 69 |
+ global last_image_faces |
|
| 70 |
+ image_faces = [] |
|
| 71 |
+ |
|
| 72 |
+ for (x, y, w, h) in faces: |
|
| 73 |
+ counter = 1 |
|
| 74 |
+ center_x = x + (w/2) |
|
| 75 |
+ center_y = y + (h/2) |
|
| 76 |
+ start_y = center_y - 40 |
|
| 77 |
+ start_x = center_x - 40 |
|
| 78 |
+ if len(last_image_faces) > 0: |
|
| 79 |
+ pos = last_image_faces[0] |
|
| 80 |
+ last_image_faces.remove(pos) |
|
| 81 |
+ dist = math.hypot(center_x - pos[0], center_y - pos[1]) |
|
| 82 |
+ if dist < 30: |
|
| 83 |
+ |
|
| 84 |
+ # Info = [center_x, center_y, time_since_last_check, user, score] |
|
| 85 |
+ center = [center_x, center_y, pos[2] + 1] |
|
| 86 |
+ print("Tracking face " + str(counter))
|
|
| 87 |
+ counter = counter + 1 |
|
| 88 |
+ if center[2] > 6: |
|
| 89 |
+ if start_x > 0 and start_y > 0: |
|
| 90 |
+ face_crop = frame[y:(y+h), x:(x+w)] |
|
| 91 |
+ info = recognizeFace(face_crop) |
|
| 92 |
+ center[2] = 1 |
|
| 93 |
+ center.append(info[0]) |
|
| 94 |
+ center.append(info[1]) |
|
| 95 |
+ image_faces.append(center) |
|
| 96 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 97 |
+ if len(pos) > 3: |
|
| 98 |
+ center.append(pos[3]) |
|
| 99 |
+ center.append(pos[4]) |
|
| 100 |
+ if pos[4] < 2000: |
|
| 101 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
| 102 |
+ cv2.putText(frame, "%.1f" % (center[4]/1000), ((x + w - 38), (y + 17)), font, 1, (0,0,255), 1, 1) |
|
| 103 |
+ else: |
|
| 104 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
| 105 |
+ cv2.putText(frame, users[center[3]], (x, (y + h + 15)), font, 1, (0,255,0), 1, 1) |
|
| 106 |
+ cv2.putText(frame, "%.1f" % (center[4]/1000), ((x + w - 38), (y + 17)), font, 1, (0,255,0), 1, 1) |
|
| 107 |
+ else: |
|
| 108 |
+ center = [center_x, center_y, 1] |
|
| 109 |
+ image_faces.append(center) |
|
| 110 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 111 |
+ else: |
|
| 112 |
+ center = [center_x, center_y, 1] |
|
| 113 |
+ image_faces.append(center) |
|
| 114 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 115 |
+ print("Number of faces detected " + str(len(last_image_faces)))
|
|
| 116 |
+ last_image_faces = image_faces |
|
| 117 |
+ return frame |
|
| 118 |
+ |
|
| 119 |
+def recognizeFace(face): |
|
| 120 |
+ print("Searching Face database...")
|
|
| 121 |
+ match_found = False |
|
| 122 |
+ face = cv2.resize(face, (120, 120)) |
|
| 123 |
+ face = cv2.cvtColor(face, cv2.cv.CV_BGR2GRAY) |
|
| 124 |
+ face = cv2.equalizeHist( face ) |
|
| 125 |
+ cv2.imwrite("/home/pi/photos/faces/face-" + str(len(face_db) + 1) + ".jpg", face)
|
|
| 126 |
+ loadFaceDB() |
|
| 127 |
+ predicted_label = predict_image_from_model(model, face) |
|
| 128 |
+ print 'Predicted: %(predicted)s ' % {"predicted": users[predicted_label[0]]}
|
|
| 129 |
+ print predicted_label[1] |
|
| 130 |
+ return predicted_label |
|
| 131 |
+ |
|
| 132 |
+def loadFaceDB(): |
|
| 133 |
+ # Load faces |
|
| 134 |
+ face_db_path='/home/pi/photos/faces' |
|
| 135 |
+ onlyfiles = [ f for f in listdir(face_db_path) if isfile(join(face_db_path,f)) ] |
|
| 136 |
+ global face_db |
|
| 137 |
+ face_db = numpy.empty(len(onlyfiles), dtype=object) |
|
| 138 |
+ for n in range(0, len(onlyfiles)): |
|
| 139 |
+ face_db[n] = cv2.imread( join(face_db_path,onlyfiles[n]) ) |
|
| 140 |
+ |
|
| 141 |
+# Face Recognition |
|
| 142 |
+ |
|
| 143 |
+def create_and_train_model_from_dict(label_matrix): |
|
| 144 |
+ """ Create eigenface model from dict of labels and images """ |
|
| 145 |
+ model = cv2.createEigenFaceRecognizer() |
|
| 146 |
+ model.train(label_matrix.values(), numpy.array(label_matrix.keys())) |
|
| 147 |
+ return model |
|
| 148 |
+ |
|
| 149 |
+def predict_image_from_model(model, image): |
|
| 150 |
+ """ Given an eigenface model, predict the label of an image""" |
|
| 151 |
+ return model.predict(image) |
|
| 152 |
+ |
|
| 153 |
+def read_csv(filename='/home/pi/faces.csv'): |
|
| 154 |
+ """ Read a csv file """ |
|
| 155 |
+ csv = open(filename, 'r') |
|
| 156 |
+ return csv |
|
| 157 |
+ |
|
| 158 |
+def prepare_training_testing_data(file): |
|
| 159 |
+ """ prepare testing and training data from file""" |
|
| 160 |
+ lines = file.readlines() |
|
| 161 |
+ training_data, testing_data = split_test_training_data(lines) |
|
| 162 |
+ return training_data |
|
| 163 |
+ |
|
| 164 |
+def create_label_matrix_dict(input_file): |
|
| 165 |
+ """ Create dict of label -> matricies from file """ |
|
| 166 |
+ ### for every line, if key exists, insert into dict, else append |
|
| 167 |
+ label_dict = {}
|
|
| 168 |
+ |
|
| 169 |
+ for line in input_file: |
|
| 170 |
+ print(line) |
|
| 171 |
+ ## split on the ';' in the csv separating filename;label |
|
| 172 |
+ filename, label = line.strip().split(';')
|
|
| 173 |
+ |
|
| 174 |
+ ##update the current key if it exists, else append to it |
|
| 175 |
+ if label_dict.has_key(int(label)): |
|
| 176 |
+ current_files = label_dict.get(label) |
|
| 177 |
+ numpy.append(current_files,read_matrix_from_file(filename)) |
|
| 178 |
+ else: |
|
| 179 |
+ label_dict[int(label)] = read_matrix_from_file(filename) |
|
| 180 |
+ |
|
| 181 |
+ return label_dict |
|
| 182 |
+ |
|
| 183 |
+def split_test_training_data(data, ratio=0.2): |
|
| 184 |
+ """ Split a list of image files by ratio of training:test data """ |
|
| 185 |
+ test_size = int(math.floor(ratio*len(data))) |
|
| 186 |
+ random.shuffle(data) |
|
| 187 |
+ return data[test_size:], data[:test_size] |
|
| 188 |
+ |
|
| 189 |
+def read_matrix_from_file(filename): |
|
| 190 |
+ """ read in grayscale version of image from file """ |
|
| 191 |
+ return cv2.imread(filename, cv2.CV_LOAD_IMAGE_GRAYSCALE) |
|
| 192 |
+ |
|
| 193 |
+def create_cvs(): |
|
| 194 |
+ BASE_PATH="/home/pi/photos/recognized_faces" |
|
| 195 |
+ SEPARATOR=";" |
|
| 196 |
+ label = 0 |
|
| 197 |
+ open("faces.csv", 'w').close()
|
|
| 198 |
+ with open("faces.csv", "a") as myfile:
|
|
| 199 |
+ for dirname, dirnames, filenames in os.walk(BASE_PATH): |
|
| 200 |
+ for subdirname in dirnames: |
|
| 201 |
+ users.append(subdirname) |
|
| 202 |
+ subject_path = os.path.join(dirname, subdirname) |
|
| 203 |
+ for filename in os.listdir(subject_path): |
|
| 204 |
+ abs_path = "%s/%s" % (subject_path, filename) |
|
| 205 |
+ myfile.write("%s%s%d\n" % (abs_path, SEPARATOR, label))
|
|
| 206 |
+ label = label + 1 |
|
| 207 |
+ |
|
| 208 |
+ |
|
| 209 |
+# Face Recognition vars |
|
| 210 |
+create_cvs() |
|
| 211 |
+training_data = prepare_training_testing_data(read_csv()) |
|
| 212 |
+data_dict = create_label_matrix_dict(training_data) |
|
| 213 |
+model = create_and_train_model_from_dict(data_dict) |
|
| 214 |
+ |
|
| 215 |
+loadFaceDB() |
|
| 216 |
+show_frame() |
|
| 217 |
+root.mainloop() |
@@ -0,0 +1,220 @@ |
||
| 1 |
+#FACE RECOGNIZER |
|
| 2 |
+ |
|
| 3 |
+import Tkinter as tk |
|
| 4 |
+import cv2, sys, time, os, math |
|
| 5 |
+from PIL import Image, ImageTk |
|
| 6 |
+import numpy as numpy |
|
| 7 |
+import pprint |
|
| 8 |
+import random |
|
| 9 |
+import math |
|
| 10 |
+from os import listdir |
|
| 11 |
+from os.path import isfile, join |
|
| 12 |
+import zerorpc |
|
| 13 |
+ |
|
| 14 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 15 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 16 |
+# Set the framerate ( not sure this does anything! ) |
|
| 17 |
+os.system('v4l2-ctl -p 4')
|
|
| 18 |
+ |
|
| 19 |
+width, height = 320, 240 |
|
| 20 |
+cap = cv2.VideoCapture(0) |
|
| 21 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width) |
|
| 22 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height) |
|
| 23 |
+ |
|
| 24 |
+cascPath = '/home/pi/lbpcascade_frontalface.xml' |
|
| 25 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 26 |
+ |
|
| 27 |
+root = tk.Tk() |
|
| 28 |
+root.attributes("-fullscreen", True)
|
|
| 29 |
+root.bind('<Escape>', lambda e: root.quit())
|
|
| 30 |
+ |
|
| 31 |
+lmain = tk.Label(root) |
|
| 32 |
+lmain.pack() |
|
| 33 |
+ |
|
| 34 |
+last_image_faces = [] |
|
| 35 |
+users = [] |
|
| 36 |
+ |
|
| 37 |
+font = cv2.FONT_HERSHEY_COMPLEX_SMALL |
|
| 38 |
+ |
|
| 39 |
+c = zerorpc.Client() |
|
| 40 |
+c.connect("tcp://192.168.1.40:4242")
|
|
| 41 |
+ |
|
| 42 |
+def show_frame(): |
|
| 43 |
+ _, frame = cap.read() |
|
| 44 |
+ frame = cv2.flip(frame, 1) |
|
| 45 |
+ frame = faceDetect(frame) |
|
| 46 |
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA) |
|
| 47 |
+ img = Image.fromarray(cv2image) |
|
| 48 |
+ imgtk = ImageTk.PhotoImage(image=img) |
|
| 49 |
+ lmain.imgtk = imgtk |
|
| 50 |
+ lmain.configure(image=imgtk) |
|
| 51 |
+ lmain.after(1, show_frame) |
|
| 52 |
+ |
|
| 53 |
+def faceDetect(frame): |
|
| 54 |
+ |
|
| 55 |
+ # Do face detection |
|
| 56 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 57 |
+ |
|
| 58 |
+ #Slower method |
|
| 59 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 60 |
+ gray = cv2.equalizeHist( gray ) |
|
| 61 |
+ faces = faceCascade.detectMultiScale( |
|
| 62 |
+ gray, |
|
| 63 |
+ scaleFactor=1.1, |
|
| 64 |
+ minNeighbors=4, |
|
| 65 |
+ minSize=(20, 20), |
|
| 66 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 67 |
+ ) |
|
| 68 |
+ |
|
| 69 |
+ print "Found {0} faces!".format(len(faces))
|
|
| 70 |
+ global last_image_faces |
|
| 71 |
+ image_faces = [] |
|
| 72 |
+ |
|
| 73 |
+ for (x, y, w, h) in faces: |
|
| 74 |
+ counter = 1 |
|
| 75 |
+ center_x = x + (w/2) |
|
| 76 |
+ center_y = y + (h/2) |
|
| 77 |
+ start_y = center_y - 40 |
|
| 78 |
+ start_x = center_x - 40 |
|
| 79 |
+ if len(last_image_faces) > 0: |
|
| 80 |
+ pos = last_image_faces[0] |
|
| 81 |
+ last_image_faces.remove(pos) |
|
| 82 |
+ dist = math.hypot(center_x - pos[0], center_y - pos[1]) |
|
| 83 |
+ if dist < 30: |
|
| 84 |
+ |
|
| 85 |
+ # Info = [center_x, center_y, time_since_last_check, user, score] |
|
| 86 |
+ center = [center_x, center_y, pos[2] + 1] |
|
| 87 |
+ print("Tracking face " + str(counter))
|
|
| 88 |
+ counter = counter + 1 |
|
| 89 |
+ if center[2] > 6: |
|
| 90 |
+ if start_x > 0 and start_y > 0: |
|
| 91 |
+ face_crop = frame[y:(y+h), x:(x+w)] |
|
| 92 |
+ info = recognizeFace(face_crop) |
|
| 93 |
+ center[2] = 1 |
|
| 94 |
+ center.append(info[0]) |
|
| 95 |
+ center.append(info[1]) |
|
| 96 |
+ image_faces.append(center) |
|
| 97 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 98 |
+ if len(pos) > 3: |
|
| 99 |
+ center.append(pos[3]) |
|
| 100 |
+ center.append(pos[4]) |
|
| 101 |
+ if pos[4] < 2000: |
|
| 102 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
| 103 |
+ cv2.putText(frame, "%.1f" % (center[4]/1000), ((x + w - 38), (y + 17)), font, 1, (0,0,255), 1, 1) |
|
| 104 |
+ else: |
|
| 105 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
| 106 |
+ cv2.putText(frame, users[center[3]], (x, (y + h + 15)), font, 1, (0,255,0), 1, 1) |
|
| 107 |
+ cv2.putText(frame, "%.1f" % (center[4]/1000), ((x + w - 38), (y + 17)), font, 1, (0,255,0), 1, 1) |
|
| 108 |
+ else: |
|
| 109 |
+ center = [center_x, center_y, 1] |
|
| 110 |
+ image_faces.append(center) |
|
| 111 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 112 |
+ else: |
|
| 113 |
+ center = [center_x, center_y, 1] |
|
| 114 |
+ image_faces.append(center) |
|
| 115 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 116 |
+ print("Number of faces detected " + str(len(last_image_faces)))
|
|
| 117 |
+ last_image_faces = image_faces |
|
| 118 |
+ return frame |
|
| 119 |
+ |
|
| 120 |
+def recognizeFace(face): |
|
| 121 |
+ print("Searching Face database...")
|
|
| 122 |
+ match_found = False |
|
| 123 |
+ face = cv2.resize(face, (120, 120)) |
|
| 124 |
+ face = cv2.cvtColor(face, cv2.cv.CV_BGR2GRAY) |
|
| 125 |
+ face = cv2.equalizeHist( face ) |
|
| 126 |
+ cv2.imwrite("/home/pi/photos/faces/face-" + str(len(face_db) + 1) + ".jpg", face)
|
|
| 127 |
+ loadFaceDB() |
|
| 128 |
+ predicted_label = predict_image_from_model(model, face) |
|
| 129 |
+ print 'Predicted: %(predicted)s ' % {"predicted": users[predicted_label[0]]}
|
|
| 130 |
+ print str(predicted_label[0]) + " - " + str(predicted_label[1]) |
|
| 131 |
+ print c.face_recognized(users[predicted_label[0]]) |
|
| 132 |
+ return predicted_label |
|
| 133 |
+ |
|
| 134 |
+def loadFaceDB(): |
|
| 135 |
+ # Load faces |
|
| 136 |
+ face_db_path='/home/pi/photos/faces' |
|
| 137 |
+ onlyfiles = [ f for f in listdir(face_db_path) if isfile(join(face_db_path,f)) ] |
|
| 138 |
+ global face_db |
|
| 139 |
+ face_db = numpy.empty(len(onlyfiles), dtype=object) |
|
| 140 |
+ for n in range(0, len(onlyfiles)): |
|
| 141 |
+ face_db[n] = cv2.imread( join(face_db_path,onlyfiles[n]) ) |
|
| 142 |
+ |
|
| 143 |
+# Face Recognition |
|
| 144 |
+ |
|
| 145 |
+def create_and_train_model_from_dict(label_matrix): |
|
| 146 |
+ """ Create eigenface model from dict of labels and images """ |
|
| 147 |
+ model = cv2.createEigenFaceRecognizer() |
|
| 148 |
+ model.train(label_matrix.values(), numpy.array(label_matrix.keys())) |
|
| 149 |
+ return model |
|
| 150 |
+ |
|
| 151 |
+def predict_image_from_model(model, image): |
|
| 152 |
+ """ Given an eigenface model, predict the label of an image""" |
|
| 153 |
+ return model.predict(image) |
|
| 154 |
+ |
|
| 155 |
+def read_csv(filename='/home/pi/faces.csv'): |
|
| 156 |
+ """ Read a csv file """ |
|
| 157 |
+ csv = open(filename, 'r') |
|
| 158 |
+ return csv |
|
| 159 |
+ |
|
| 160 |
+def prepare_training_testing_data(file): |
|
| 161 |
+ """ prepare testing and training data from file""" |
|
| 162 |
+ lines = file.readlines() |
|
| 163 |
+ training_data, testing_data = split_test_training_data(lines) |
|
| 164 |
+ return training_data |
|
| 165 |
+ |
|
| 166 |
+def create_label_matrix_dict(input_file): |
|
| 167 |
+ """ Create dict of label -> matricies from file """ |
|
| 168 |
+ ### for every line, if key exists, insert into dict, else append |
|
| 169 |
+ label_dict = {}
|
|
| 170 |
+ |
|
| 171 |
+ for line in input_file: |
|
| 172 |
+ print(line) |
|
| 173 |
+ ## split on the ';' in the csv separating filename;label |
|
| 174 |
+ filename, label = line.strip().split(';')
|
|
| 175 |
+ |
|
| 176 |
+ ##update the current key if it exists, else append to it |
|
| 177 |
+ if label_dict.has_key(int(label)): |
|
| 178 |
+ current_files = label_dict.get(label) |
|
| 179 |
+ numpy.append(current_files,read_matrix_from_file(filename)) |
|
| 180 |
+ else: |
|
| 181 |
+ label_dict[int(label)] = read_matrix_from_file(filename) |
|
| 182 |
+ |
|
| 183 |
+ return label_dict |
|
| 184 |
+ |
|
| 185 |
+def split_test_training_data(data, ratio=0.2): |
|
| 186 |
+ """ Split a list of image files by ratio of training:test data """ |
|
| 187 |
+ test_size = int(math.floor(ratio*len(data))) |
|
| 188 |
+ random.shuffle(data) |
|
| 189 |
+ return data[test_size:], data[:test_size] |
|
| 190 |
+ |
|
| 191 |
+def read_matrix_from_file(filename): |
|
| 192 |
+ """ read in grayscale version of image from file """ |
|
| 193 |
+ return cv2.imread(filename, cv2.CV_LOAD_IMAGE_GRAYSCALE) |
|
| 194 |
+ |
|
| 195 |
+def create_csv(): |
|
| 196 |
+ BASE_PATH="/home/pi/photos/recognized_faces" |
|
| 197 |
+ SEPARATOR=";" |
|
| 198 |
+ label = 0 |
|
| 199 |
+ open("/home/pi/faces.csv", 'w').close()
|
|
| 200 |
+ with open("/home/pi/faces.csv", "a") as myfile:
|
|
| 201 |
+ for dirname, dirnames, filenames in os.walk(BASE_PATH): |
|
| 202 |
+ for subdirname in dirnames: |
|
| 203 |
+ users.append(subdirname) |
|
| 204 |
+ subject_path = os.path.join(dirname, subdirname) |
|
| 205 |
+ for filename in os.listdir(subject_path): |
|
| 206 |
+ abs_path = "%s/%s" % (subject_path, filename) |
|
| 207 |
+ myfile.write("%s%s%d\n" % (abs_path, SEPARATOR, label))
|
|
| 208 |
+ label = label + 1 |
|
| 209 |
+ |
|
| 210 |
+ |
|
| 211 |
+# Face Recognition vars |
|
| 212 |
+create_csv() |
|
| 213 |
+training_data = prepare_training_testing_data(read_csv()) |
|
| 214 |
+data_dict = create_label_matrix_dict(training_data) |
|
| 215 |
+model = create_and_train_model_from_dict(data_dict) |
|
| 216 |
+ |
|
| 217 |
+loadFaceDB() |
|
| 218 |
+show_frame() |
|
| 219 |
+ |
|
| 220 |
+root.mainloop() |
@@ -0,0 +1,224 @@ |
||
| 1 |
+#FACE RECOGNIZER |
|
| 2 |
+ |
|
| 3 |
+#import Tkinter as tk |
|
| 4 |
+import cv2, sys, time, os, math |
|
| 5 |
+from PIL import Image, ImageTk |
|
| 6 |
+import numpy as numpy |
|
| 7 |
+import pprint |
|
| 8 |
+import random |
|
| 9 |
+import math |
|
| 10 |
+from os import listdir |
|
| 11 |
+from os.path import isfile, join |
|
| 12 |
+import zerorpc |
|
| 13 |
+ |
|
| 14 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 15 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 16 |
+# Set the framerate ( not sure this does anything! ) |
|
| 17 |
+#os.system('v4l2-ctl -p 4')
|
|
| 18 |
+ |
|
| 19 |
+width, height = 320, 240 |
|
| 20 |
+cap = cv2.VideoCapture() |
|
| 21 |
+cap.open(0) |
|
| 22 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width) |
|
| 23 |
+cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height) |
|
| 24 |
+ |
|
| 25 |
+cascPath = '/Users/james/dev/betabot-python-tests/lbpcascade_frontalface.xml' |
|
| 26 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 27 |
+ |
|
| 28 |
+#root = tk.Tk() |
|
| 29 |
+#root.attributes("-fullscreen", True)
|
|
| 30 |
+#root.bind('<Escape>', lambda e: root.quit())
|
|
| 31 |
+ |
|
| 32 |
+#lmain = tk.Label(root) |
|
| 33 |
+#lmain.pack() |
|
| 34 |
+ |
|
| 35 |
+last_image_faces = [] |
|
| 36 |
+users = [] |
|
| 37 |
+ |
|
| 38 |
+font = cv2.FONT_HERSHEY_COMPLEX_SMALL |
|
| 39 |
+ |
|
| 40 |
+c = zerorpc.Client() |
|
| 41 |
+c.connect("tcp://192.168.1.40:4242")
|
|
| 42 |
+ |
|
| 43 |
+def show_frame(): |
|
| 44 |
+ _, frame = cap.read() |
|
| 45 |
+ frame = cv2.flip(frame, 1) |
|
| 46 |
+ frame = faceDetect(frame) |
|
| 47 |
+ cv2.imshow("webcam",frame);
|
|
| 48 |
+ cv2image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA) |
|
| 49 |
+ img = Image.fromarray(cv2image) |
|
| 50 |
+ #imgtk = ImageTk.PhotoImage(image=img) |
|
| 51 |
+ #lmain.imgtk = imgtk |
|
| 52 |
+ #lmain.configure(image=imgtk) |
|
| 53 |
+ #lmain.after(1, show_frame) |
|
| 54 |
+ |
|
| 55 |
+def faceDetect(frame): |
|
| 56 |
+ |
|
| 57 |
+ # Do face detection |
|
| 58 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 59 |
+ |
|
| 60 |
+ #Slower method |
|
| 61 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 62 |
+ gray = cv2.equalizeHist( gray ) |
|
| 63 |
+ faces = faceCascade.detectMultiScale( |
|
| 64 |
+ gray, |
|
| 65 |
+ scaleFactor=1.1, |
|
| 66 |
+ minNeighbors=4, |
|
| 67 |
+ minSize=(20, 20), |
|
| 68 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 69 |
+ ) |
|
| 70 |
+ |
|
| 71 |
+ print "Found {0} faces!".format(len(faces))
|
|
| 72 |
+ global last_image_faces |
|
| 73 |
+ image_faces = [] |
|
| 74 |
+ |
|
| 75 |
+ for (x, y, w, h) in faces: |
|
| 76 |
+ counter = 1 |
|
| 77 |
+ center_x = x + (w/2) |
|
| 78 |
+ center_y = y + (h/2) |
|
| 79 |
+ start_y = center_y - 40 |
|
| 80 |
+ start_x = center_x - 40 |
|
| 81 |
+ if len(last_image_faces) > 0: |
|
| 82 |
+ pos = last_image_faces[0] |
|
| 83 |
+ last_image_faces.remove(pos) |
|
| 84 |
+ dist = math.hypot(center_x - pos[0], center_y - pos[1]) |
|
| 85 |
+ if dist < 30: |
|
| 86 |
+ |
|
| 87 |
+ # Info = [center_x, center_y, time_since_last_check, user, score] |
|
| 88 |
+ center = [center_x, center_y, pos[2] + 1] |
|
| 89 |
+ print("Tracking face " + str(counter))
|
|
| 90 |
+ counter = counter + 1 |
|
| 91 |
+ if center[2] > 6: |
|
| 92 |
+ if start_x > 0 and start_y > 0: |
|
| 93 |
+ face_crop = frame[y:(y+h), x:(x+w)] |
|
| 94 |
+ info = recognizeFace(face_crop) |
|
| 95 |
+ center[2] = 1 |
|
| 96 |
+ center.append(info[0]) |
|
| 97 |
+ center.append(info[1]) |
|
| 98 |
+ image_faces.append(center) |
|
| 99 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 100 |
+ if len(pos) > 3: |
|
| 101 |
+ center.append(pos[3]) |
|
| 102 |
+ center.append(pos[4]) |
|
| 103 |
+ if pos[4] < 2000: |
|
| 104 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) |
|
| 105 |
+ cv2.putText(frame, "%.1f" % (center[4]/1000), ((x + w - 38), (y + 17)), font, 1, (0,0,255), 1, 1) |
|
| 106 |
+ else: |
|
| 107 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
| 108 |
+ cv2.putText(frame, users[center[3]], (x, (y + h + 15)), font, 1, (0,255,0), 1, 1) |
|
| 109 |
+ cv2.putText(frame, "%.1f" % (center[4]/1000), ((x + w - 38), (y + 17)), font, 1, (0,255,0), 1, 1) |
|
| 110 |
+ else: |
|
| 111 |
+ center = [center_x, center_y, 1] |
|
| 112 |
+ image_faces.append(center) |
|
| 113 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 114 |
+ else: |
|
| 115 |
+ center = [center_x, center_y, 1] |
|
| 116 |
+ image_faces.append(center) |
|
| 117 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) |
|
| 118 |
+ print("Number of faces detected " + str(len(last_image_faces)))
|
|
| 119 |
+ last_image_faces = image_faces |
|
| 120 |
+ return frame |
|
| 121 |
+ |
|
| 122 |
+def recognizeFace(face): |
|
| 123 |
+ print("Searching Face database...")
|
|
| 124 |
+ match_found = False |
|
| 125 |
+ face = cv2.resize(face, (120, 120)) |
|
| 126 |
+ face = cv2.cvtColor(face, cv2.cv.CV_BGR2GRAY) |
|
| 127 |
+ face = cv2.equalizeHist( face ) |
|
| 128 |
+ cv2.imwrite("/Users/james/dev/betabot-python-tests/photos/faces/face-" + str(len(face_db) + 1) + ".jpg", face)
|
|
| 129 |
+ loadFaceDB() |
|
| 130 |
+ predicted_label = predict_image_from_model(model, face) |
|
| 131 |
+ print 'Predicted: %(predicted)s ' % {"predicted": users[predicted_label[0]]}
|
|
| 132 |
+ print str(predicted_label[0]) + " - " + str(predicted_label[1]) |
|
| 133 |
+ print c.face_recognized(users[predicted_label[0]]) |
|
| 134 |
+ return predicted_label |
|
| 135 |
+ |
|
| 136 |
+def loadFaceDB(): |
|
| 137 |
+ # Load faces |
|
| 138 |
+ face_db_path='/Users/james/dev/betabot-python-tests/photos/faces' |
|
| 139 |
+ onlyfiles = [ f for f in listdir(face_db_path) if isfile(join(face_db_path,f)) ] |
|
| 140 |
+ global face_db |
|
| 141 |
+ face_db = numpy.empty(len(onlyfiles), dtype=object) |
|
| 142 |
+ for n in range(0, len(onlyfiles)): |
|
| 143 |
+ face_db[n] = cv2.imread( join(face_db_path,onlyfiles[n]) ) |
|
| 144 |
+ |
|
| 145 |
+# Face Recognition |
|
| 146 |
+ |
|
| 147 |
+def create_and_train_model_from_dict(label_matrix): |
|
| 148 |
+ """ Create eigenface model from dict of labels and images """ |
|
| 149 |
+ model = cv2.createEigenFaceRecognizer() |
|
| 150 |
+ model.train(label_matrix.values(), numpy.array(label_matrix.keys())) |
|
| 151 |
+ return model |
|
| 152 |
+ |
|
| 153 |
+def predict_image_from_model(model, image): |
|
| 154 |
+ """ Given an eigenface model, predict the label of an image""" |
|
| 155 |
+ return model.predict(image) |
|
| 156 |
+ |
|
| 157 |
+def read_csv(filename='/Users/james/dev/betabot-python-tests/faces.csv'): |
|
| 158 |
+ """ Read a csv file """ |
|
| 159 |
+ csv = open(filename, 'r') |
|
| 160 |
+ return csv |
|
| 161 |
+ |
|
| 162 |
+def prepare_training_testing_data(file): |
|
| 163 |
+ """ prepare testing and training data from file""" |
|
| 164 |
+ lines = file.readlines() |
|
| 165 |
+ training_data, testing_data = split_test_training_data(lines) |
|
| 166 |
+ return training_data |
|
| 167 |
+ |
|
| 168 |
+def create_label_matrix_dict(input_file): |
|
| 169 |
+ """ Create dict of label -> matricies from file """ |
|
| 170 |
+ ### for every line, if key exists, insert into dict, else append |
|
| 171 |
+ label_dict = {}
|
|
| 172 |
+ |
|
| 173 |
+ for line in input_file: |
|
| 174 |
+ print(line) |
|
| 175 |
+ ## split on the ';' in the csv separating filename;label |
|
| 176 |
+ filename, label = line.strip().split(';')
|
|
| 177 |
+ |
|
| 178 |
+ ##update the current key if it exists, else append to it |
|
| 179 |
+ if label_dict.has_key(int(label)): |
|
| 180 |
+ current_files = label_dict.get(label) |
|
| 181 |
+ numpy.append(current_files,read_matrix_from_file(filename)) |
|
| 182 |
+ else: |
|
| 183 |
+ label_dict[int(label)] = read_matrix_from_file(filename) |
|
| 184 |
+ |
|
| 185 |
+ return label_dict |
|
| 186 |
+ |
|
| 187 |
+def split_test_training_data(data, ratio=0.2): |
|
| 188 |
+ """ Split a list of image files by ratio of training:test data """ |
|
| 189 |
+ test_size = int(math.floor(ratio*len(data))) |
|
| 190 |
+ random.shuffle(data) |
|
| 191 |
+ return data[test_size:], data[:test_size] |
|
| 192 |
+ |
|
| 193 |
+def read_matrix_from_file(filename): |
|
| 194 |
+ """ read in grayscale version of image from file """ |
|
| 195 |
+ return cv2.imread(filename, cv2.CV_LOAD_IMAGE_GRAYSCALE) |
|
| 196 |
+ |
|
| 197 |
+def create_csv(): |
|
| 198 |
+ BASE_PATH="/Users/james/dev/betabot-python-tests/photos/recognized_faces" |
|
| 199 |
+ SEPARATOR=";" |
|
| 200 |
+ label = 0 |
|
| 201 |
+ open("/Users/james/dev/betabot-python-tests/faces.csv", 'w').close()
|
|
| 202 |
+ with open("/Users/james/dev/betabot-python-tests/faces.csv", "a") as myfile:
|
|
| 203 |
+ for dirname, dirnames, filenames in os.walk(BASE_PATH): |
|
| 204 |
+ for subdirname in dirnames: |
|
| 205 |
+ users.append(subdirname) |
|
| 206 |
+ subject_path = os.path.join(dirname, subdirname) |
|
| 207 |
+ for filename in os.listdir(subject_path): |
|
| 208 |
+ abs_path = "%s/%s" % (subject_path, filename) |
|
| 209 |
+ myfile.write("%s%s%d\n" % (abs_path, SEPARATOR, label))
|
|
| 210 |
+ label = label + 1 |
|
| 211 |
+ |
|
| 212 |
+ |
|
| 213 |
+# Face Recognition vars |
|
| 214 |
+create_csv() |
|
| 215 |
+training_data = prepare_training_testing_data(read_csv()) |
|
| 216 |
+data_dict = create_label_matrix_dict(training_data) |
|
| 217 |
+model = create_and_train_model_from_dict(data_dict) |
|
| 218 |
+ |
|
| 219 |
+loadFaceDB() |
|
| 220 |
+ |
|
| 221 |
+while True: |
|
| 222 |
+ show_frame() |
|
| 223 |
+ |
|
| 224 |
+#root.mainloop() |
@@ -0,0 +1,122 @@ |
||
| 1 |
+#!/usr/bin/env python |
|
| 2 |
+ |
|
| 3 |
+import cv2, sys, time, os |
|
| 4 |
+#from pantilt import * |
|
| 5 |
+import Tkinter as tk |
|
| 6 |
+import PIL |
|
| 7 |
+from PIL import ImageTk |
|
| 8 |
+from PIL import Image |
|
| 9 |
+ |
|
| 10 |
+# Load the BCM V4l2 driver for /dev/video0 |
|
| 11 |
+os.system('sudo modprobe bcm2835-v4l2')
|
|
| 12 |
+# Set the framerate ( not sure this does anything! ) |
|
| 13 |
+os.system('v4l2-ctl -p 4')
|
|
| 14 |
+ |
|
| 15 |
+# Frame Size. Smaller is faster, but less accurate. |
|
| 16 |
+# Wide and short is better, since moving your head |
|
| 17 |
+# vertically is kinda hard! |
|
| 18 |
+FRAME_W = 320 |
|
| 19 |
+FRAME_H = 240 |
|
| 20 |
+ |
|
| 21 |
+# Default Pan/Tilt for the camera in degrees. |
|
| 22 |
+# Camera range is from 0 to 180 |
|
| 23 |
+cam_pan = 70 |
|
| 24 |
+cam_tilt = 70 |
|
| 25 |
+ |
|
| 26 |
+# Set up the CascadeClassifier for face tracking |
|
| 27 |
+#cascPath = 'haarcascade_frontalface_default.xml' # sys.argv[1] |
|
| 28 |
+cascPath = '/home/pi/lbpcascade_frontalface.xml' |
|
| 29 |
+faceCascade = cv2.CascadeClassifier(cascPath) |
|
| 30 |
+ |
|
| 31 |
+# Set up the capture with our frame size |
|
| 32 |
+video_capture = cv2.VideoCapture(0) |
|
| 33 |
+video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, FRAME_W) |
|
| 34 |
+video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, FRAME_H) |
|
| 35 |
+time.sleep(2) |
|
| 36 |
+ |
|
| 37 |
+window = tk.Tk() #Makes main window |
|
| 38 |
+window.wm_title("Digital Microscope")
|
|
| 39 |
+window.config(background="#FFFFFF") |
|
| 40 |
+#window.attributes("-fullscreen", True)
|
|
| 41 |
+ |
|
| 42 |
+# Turn the camera to the default position |
|
| 43 |
+#pan(cam_pan) |
|
| 44 |
+#tilt(cam_tilt) |
|
| 45 |
+ |
|
| 46 |
+window.mainloop() |
|
| 47 |
+ |
|
| 48 |
+while True: |
|
| 49 |
+ # Capture frame-by-frame |
|
| 50 |
+ ret, frame = video_capture.read() |
|
| 51 |
+ |
|
| 52 |
+ if ret == False: |
|
| 53 |
+ print("Error getting image")
|
|
| 54 |
+ continue |
|
| 55 |
+ |
|
| 56 |
+ # Convert to greyscale for detection |
|
| 57 |
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
| 58 |
+ gray = cv2.equalizeHist( gray ) |
|
| 59 |
+ |
|
| 60 |
+ # Do face detection |
|
| 61 |
+ #faces = faceCascade.detectMultiScale(frame, 1.1, 3, 0, (10, 10)) |
|
| 62 |
+ |
|
| 63 |
+ # Slower method |
|
| 64 |
+ faces = faceCascade.detectMultiScale( |
|
| 65 |
+ gray, |
|
| 66 |
+ scaleFactor=1.1, |
|
| 67 |
+ minNeighbors=4, |
|
| 68 |
+ minSize=(20, 20), |
|
| 69 |
+ flags=cv2.cv.CV_HAAR_SCALE_IMAGE | cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.CV_HAAR_DO_ROUGH_SEARCH |
|
| 70 |
+ ) |
|
| 71 |
+ |
|
| 72 |
+ print "Found {0} faces!".format(len(faces))
|
|
| 73 |
+ |
|
| 74 |
+ for (x, y, w, h) in faces: |
|
| 75 |
+ # Draw a green rectangle around the face |
|
| 76 |
+ cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
| 77 |
+ |
|
| 78 |
+ # Track first face |
|
| 79 |
+ |
|
| 80 |
+ # Get the center of the face |
|
| 81 |
+ |
|
| 82 |
+ # Correct relative to center of image |
|
| 83 |
+ turn_x = float(x - (FRAME_W/2)) |
|
| 84 |
+ turn_y = float(y - (FRAME_H/2)) |
|
| 85 |
+ |
|
| 86 |
+ # Convert to percentage offset |
|
| 87 |
+ turn_x /= float(FRAME_W/2) |
|
| 88 |
+ turn_y /= float(FRAME_H/2) |
|
| 89 |
+ |
|
| 90 |
+ # Scale offset to degrees |
|
| 91 |
+ turn_x *= 2.5 # VFOV |
|
| 92 |
+ turn_y *= 2.5 # HFOV |
|
| 93 |
+ cam_pan += -turn_x |
|
| 94 |
+ cam_tilt += turn_y |
|
| 95 |
+ |
|
| 96 |
+ # Clamp Pan/Tilt to 0 to 180 degrees |
|
| 97 |
+ # cam_pan = max(0,min(180,cam_pan)) |
|
| 98 |
+ # cam_tilt = max(0,min(180,cam_tilt)) |
|
| 99 |
+ |
|
| 100 |
+ # Update the servos |
|
| 101 |
+ # pan(cam_pan) |
|
| 102 |
+ # tilt(cam_tilt) |
|
| 103 |
+ |
|
| 104 |
+ break |
|
| 105 |
+ |
|
| 106 |
+ # Display the image, with rectangle |
|
| 107 |
+ # on the Pi desktop |
|
| 108 |
+ #cv2.imshow('Video', frame)
|
|
| 109 |
+ b,g,r = cv2.split(frame) |
|
| 110 |
+ img = cv2.merge((r,g,b)) |
|
| 111 |
+ im = Image.fromarray(img) |
|
| 112 |
+ img = ImageTk.PhotoImage(image=im) |
|
| 113 |
+ #img = ImageTk.PhotoImage(frame) |
|
| 114 |
+ panel = tk.Label(window, image = img) |
|
| 115 |
+ |
|
| 116 |
+ |
|
| 117 |
+ if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
| 118 |
+ break |
|
| 119 |
+ |
|
| 120 |
+# When everything is done, release the capture |
|
| 121 |
+video_capture.release() |
|
| 122 |
+cv2.destroyAllWindows() |
@@ -0,0 +1,1505 @@ |
||
| 1 |
+<?xml version="1.0"?> |
|
| 2 |
+<!-- |
|
| 3 |
+number of positive samples 3000 |
|
| 4 |
+number of negative samples 1500 |
|
| 5 |
+--> |
|
| 6 |
+<opencv_storage> |
|
| 7 |
+<cascade type_id="opencv-cascade-classifier"> |
|
| 8 |
+ <stageType>BOOST</stageType> |
|
| 9 |
+ <featureType>LBP</featureType> |
|
| 10 |
+ <height>24</height> |
|
| 11 |
+ <width>24</width> |
|
| 12 |
+ <stageParams> |
|
| 13 |
+ <boostType>GAB</boostType> |
|
| 14 |
+ <minHitRate>0.9950000047683716</minHitRate> |
|
| 15 |
+ <maxFalseAlarm>0.5000000000000000</maxFalseAlarm> |
|
| 16 |
+ <weightTrimRate>0.9500000000000000</weightTrimRate> |
|
| 17 |
+ <maxDepth>1</maxDepth> |
|
| 18 |
+ <maxWeakCount>100</maxWeakCount></stageParams> |
|
| 19 |
+ <featureParams> |
|
| 20 |
+ <maxCatCount>256</maxCatCount></featureParams> |
|
| 21 |
+ <stageNum>20</stageNum> |
|
| 22 |
+ <stages> |
|
| 23 |
+ <!-- stage 0 --> |
|
| 24 |
+ <_> |
|
| 25 |
+ <maxWeakCount>3</maxWeakCount> |
|
| 26 |
+ <stageThreshold>-0.7520892024040222</stageThreshold> |
|
| 27 |
+ <weakClassifiers> |
|
| 28 |
+ <!-- tree 0 --> |
|
| 29 |
+ <_> |
|
| 30 |
+ <internalNodes> |
|
| 31 |
+ 0 -1 46 -67130709 -21569 -1426120013 -1275125205 -21585 |
|
| 32 |
+ -16385 587145899 -24005</internalNodes> |
|
| 33 |
+ <leafValues> |
|
| 34 |
+ -0.6543210148811340 0.8888888955116272</leafValues></_> |
|
| 35 |
+ <!-- tree 1 --> |
|
| 36 |
+ <_> |
|
| 37 |
+ <internalNodes> |
|
| 38 |
+ 0 -1 13 -163512766 -769593758 -10027009 -262145 -514457854 |
|
| 39 |
+ -193593353 -524289 -1</internalNodes> |
|
| 40 |
+ <leafValues> |
|
| 41 |
+ -0.7739216089248657 0.7278633713722229</leafValues></_> |
|
| 42 |
+ <!-- tree 2 --> |
|
| 43 |
+ <_> |
|
| 44 |
+ <internalNodes> |
|
| 45 |
+ 0 -1 2 -363936790 -893203669 -1337948010 -136907894 |
|
| 46 |
+ 1088782736 -134217726 -741544961 -1590337</internalNodes> |
|
| 47 |
+ <leafValues> |
|
| 48 |
+ -0.7068563103675842 0.6761534214019775</leafValues></_></weakClassifiers></_> |
|
| 49 |
+ <!-- stage 1 --> |
|
| 50 |
+ <_> |
|
| 51 |
+ <maxWeakCount>4</maxWeakCount> |
|
| 52 |
+ <stageThreshold>-0.4872078299522400</stageThreshold> |
|
| 53 |
+ <weakClassifiers> |
|
| 54 |
+ <!-- tree 0 --> |
|
| 55 |
+ <_> |
|
| 56 |
+ <internalNodes> |
|
| 57 |
+ 0 -1 84 2147483647 1946124287 -536870913 2147450879 |
|
| 58 |
+ 738132490 1061101567 243204619 2147446655</internalNodes> |
|
| 59 |
+ <leafValues> |
|
| 60 |
+ -0.8083735704421997 0.7685696482658386</leafValues></_> |
|
| 61 |
+ <!-- tree 1 --> |
|
| 62 |
+ <_> |
|
| 63 |
+ <internalNodes> |
|
| 64 |
+ 0 -1 21 2147483647 263176079 1879048191 254749487 1879048191 |
|
| 65 |
+ -134252545 -268435457 801111999</internalNodes> |
|
| 66 |
+ <leafValues> |
|
| 67 |
+ -0.7698410153388977 0.6592915654182434</leafValues></_> |
|
| 68 |
+ <!-- tree 2 --> |
|
| 69 |
+ <_> |
|
| 70 |
+ <internalNodes> |
|
| 71 |
+ 0 -1 106 -98110272 1610939566 -285484400 -850010381 |
|
| 72 |
+ -189334372 -1671954433 -571026695 -262145</internalNodes> |
|
| 73 |
+ <leafValues> |
|
| 74 |
+ -0.7506558895111084 0.5444605946540833</leafValues></_> |
|
| 75 |
+ <!-- tree 3 --> |
|
| 76 |
+ <_> |
|
| 77 |
+ <internalNodes> |
|
| 78 |
+ 0 -1 48 -798690576 -131075 1095771153 -237144073 -65569 -1 |
|
| 79 |
+ -216727745 -69206049</internalNodes> |
|
| 80 |
+ <leafValues> |
|
| 81 |
+ -0.7775990366935730 0.5465461611747742</leafValues></_></weakClassifiers></_> |
|
| 82 |
+ <!-- stage 2 --> |
|
| 83 |
+ <_> |
|
| 84 |
+ <maxWeakCount>4</maxWeakCount> |
|
| 85 |
+ <stageThreshold>-1.1592328548431396</stageThreshold> |
|
| 86 |
+ <weakClassifiers> |
|
| 87 |
+ <!-- tree 0 --> |
|
| 88 |
+ <_> |
|
| 89 |
+ <internalNodes> |
|
| 90 |
+ 0 -1 47 -21585 -20549 -100818262 -738254174 -20561 -36865 |
|
| 91 |
+ -151016790 -134238549</internalNodes> |
|
| 92 |
+ <leafValues> |
|
| 93 |
+ -0.5601882934570313 0.7743113040924072</leafValues></_> |
|
| 94 |
+ <!-- tree 1 --> |
|
| 95 |
+ <_> |
|
| 96 |
+ <internalNodes> |
|
| 97 |
+ 0 -1 12 -286003217 183435247 -268994614 -421330945 |
|
| 98 |
+ -402686081 1090387966 -286785545 -402653185</internalNodes> |
|
| 99 |
+ <leafValues> |
|
| 100 |
+ -0.6124526262283325 0.6978127956390381</leafValues></_> |
|
| 101 |
+ <!-- tree 2 --> |
|
| 102 |
+ <_> |
|
| 103 |
+ <internalNodes> |
|
| 104 |
+ 0 -1 26 -50347012 970882927 -50463492 -1253377 -134218251 |
|
| 105 |
+ -50364513 -33619992 -172490753</internalNodes> |
|
| 106 |
+ <leafValues> |
|
| 107 |
+ -0.6114496588706970 0.6537628173828125</leafValues></_> |
|
| 108 |
+ <!-- tree 3 --> |
|
| 109 |
+ <_> |
|
| 110 |
+ <internalNodes> |
|
| 111 |
+ 0 -1 8 -273 -135266321 1877977738 -2088243418 -134217987 |
|
| 112 |
+ 2146926575 -18910642 1095231247</internalNodes> |
|
| 113 |
+ <leafValues> |
|
| 114 |
+ -0.6854077577590942 0.5403239130973816</leafValues></_></weakClassifiers></_> |
|
| 115 |
+ <!-- stage 3 --> |
|
| 116 |
+ <_> |
|
| 117 |
+ <maxWeakCount>5</maxWeakCount> |
|
| 118 |
+ <stageThreshold>-0.7562355995178223</stageThreshold> |
|
| 119 |
+ <weakClassifiers> |
|
| 120 |
+ <!-- tree 0 --> |
|
| 121 |
+ <_> |
|
| 122 |
+ <internalNodes> |
|
| 123 |
+ 0 -1 96 -1273 1870659519 -20971602 -67633153 -134250731 |
|
| 124 |
+ 2004875127 -250 -150995969</internalNodes> |
|
| 125 |
+ <leafValues> |
|
| 126 |
+ -0.4051094949245453 0.7584033608436585</leafValues></_> |
|
| 127 |
+ <!-- tree 1 --> |
|
| 128 |
+ <_> |
|
| 129 |
+ <internalNodes> |
|
| 130 |
+ 0 -1 33 -868162224 -76810262 -4262145 -257 1465211989 |
|
| 131 |
+ -268959873 -2656269 -524289</internalNodes> |
|
| 132 |
+ <leafValues> |
|
| 133 |
+ -0.7388162612915039 0.5340843200683594</leafValues></_> |
|
| 134 |
+ <!-- tree 2 --> |
|
| 135 |
+ <_> |
|
| 136 |
+ <internalNodes> |
|
| 137 |
+ 0 -1 57 -12817 -49 -541103378 -152950 -38993 -20481 -1153876 |
|
| 138 |
+ -72478976</internalNodes> |
|
| 139 |
+ <leafValues> |
|
| 140 |
+ -0.6582943797111511 0.5339496731758118</leafValues></_> |
|
| 141 |
+ <!-- tree 3 --> |
|
| 142 |
+ <_> |
|
| 143 |
+ <internalNodes> |
|
| 144 |
+ 0 -1 125 -269484161 -452984961 -319816180 -1594032130 -2111 |
|
| 145 |
+ -990117891 -488975296 -520947741</internalNodes> |
|
| 146 |
+ <leafValues> |
|
| 147 |
+ -0.5981323719024658 0.5323504805564880</leafValues></_> |
|
| 148 |
+ <!-- tree 4 --> |
|
| 149 |
+ <_> |
|
| 150 |
+ <internalNodes> |
|
| 151 |
+ 0 -1 53 557787431 670265215 -1342193665 -1075892225 |
|
| 152 |
+ 1998528318 1056964607 -33570977 -1</internalNodes> |
|
| 153 |
+ <leafValues> |
|
| 154 |
+ -0.6498787999153137 0.4913350641727448</leafValues></_></weakClassifiers></_> |
|
| 155 |
+ <!-- stage 4 --> |
|
| 156 |
+ <_> |
|
| 157 |
+ <maxWeakCount>5</maxWeakCount> |
|
| 158 |
+ <stageThreshold>-0.8085358142852783</stageThreshold> |
|
| 159 |
+ <weakClassifiers> |
|
| 160 |
+ <!-- tree 0 --> |
|
| 161 |
+ <_> |
|
| 162 |
+ <internalNodes> |
|
| 163 |
+ 0 -1 60 -536873708 880195381 -16842788 -20971521 -176687276 |
|
| 164 |
+ -168427659 -16777260 -33554626</internalNodes> |
|
| 165 |
+ <leafValues> |
|
| 166 |
+ -0.5278195738792419 0.6946372389793396</leafValues></_> |
|
| 167 |
+ <!-- tree 1 --> |
|
| 168 |
+ <_> |
|
| 169 |
+ <internalNodes> |
|
| 170 |
+ 0 -1 7 -1 -62981529 -1090591130 805330978 -8388827 -41945787 |
|
| 171 |
+ -39577 -531118985</internalNodes> |
|
| 172 |
+ <leafValues> |
|
| 173 |
+ -0.5206505060195923 0.6329920291900635</leafValues></_> |
|
| 174 |
+ <!-- tree 2 --> |
|
| 175 |
+ <_> |
|
| 176 |
+ <internalNodes> |
|
| 177 |
+ 0 -1 98 -725287348 1347747543 -852489 -16809993 1489881036 |
|
| 178 |
+ -167903241 -1 -1</internalNodes> |
|
| 179 |
+ <leafValues> |
|
| 180 |
+ -0.7516061067581177 0.4232024252414703</leafValues></_> |
|
| 181 |
+ <!-- tree 3 --> |
|
| 182 |
+ <_> |
|
| 183 |
+ <internalNodes> |
|
| 184 |
+ 0 -1 44 -32777 1006582562 -65 935312171 -8388609 -1078198273 |
|
| 185 |
+ -1 733886267</internalNodes> |
|
| 186 |
+ <leafValues> |
|
| 187 |
+ -0.7639313936233521 0.4123568832874298</leafValues></_> |
|
| 188 |
+ <!-- tree 4 --> |
|
| 189 |
+ <_> |
|
| 190 |
+ <internalNodes> |
|
| 191 |
+ 0 -1 24 -85474705 2138828511 -1036436754 817625855 |
|
| 192 |
+ 1123369029 -58796809 -1013468481 -194513409</internalNodes> |
|
| 193 |
+ <leafValues> |
|
| 194 |
+ -0.5123769044876099 0.5791834592819214</leafValues></_></weakClassifiers></_> |
|
| 195 |
+ <!-- stage 5 --> |
|
| 196 |
+ <_> |
|
| 197 |
+ <maxWeakCount>5</maxWeakCount> |
|
| 198 |
+ <stageThreshold>-0.5549971461296082</stageThreshold> |
|
| 199 |
+ <weakClassifiers> |
|
| 200 |
+ <!-- tree 0 --> |
|
| 201 |
+ <_> |
|
| 202 |
+ <internalNodes> |
|
| 203 |
+ 0 -1 42 -17409 -20481 -268457797 -134239493 -17473 -1 -21829 |
|
| 204 |
+ -21846</internalNodes> |
|
| 205 |
+ <leafValues> |
|
| 206 |
+ -0.3763174116611481 0.7298233509063721</leafValues></_> |
|
| 207 |
+ <!-- tree 1 --> |
|
| 208 |
+ <_> |
|
| 209 |
+ <internalNodes> |
|
| 210 |
+ 0 -1 6 -805310737 -2098262358 -269504725 682502698 |
|
| 211 |
+ 2147483519 1740574719 -1090519233 -268472385</internalNodes> |
|
| 212 |
+ <leafValues> |
|
| 213 |
+ -0.5352765917778015 0.5659480094909668</leafValues></_> |
|
| 214 |
+ <!-- tree 2 --> |
|
| 215 |
+ <_> |
|
| 216 |
+ <internalNodes> |
|
| 217 |
+ 0 -1 61 -67109678 -6145 -8 -87884584 -20481 -1073762305 |
|
| 218 |
+ -50856216 -16849696</internalNodes> |
|
| 219 |
+ <leafValues> |
|
| 220 |
+ -0.5678374171257019 0.4961479902267456</leafValues></_> |
|
| 221 |
+ <!-- tree 3 --> |
|
| 222 |
+ <_> |
|
| 223 |
+ <internalNodes> |
|
| 224 |
+ 0 -1 123 -138428633 1002418167 -1359008245 -1908670465 |
|
| 225 |
+ -1346685918 910098423 -1359010520 -1346371657</internalNodes> |
|
| 226 |
+ <leafValues> |
|
| 227 |
+ -0.5706262588500977 0.4572288393974304</leafValues></_> |
|
| 228 |
+ <!-- tree 4 --> |
|
| 229 |
+ <_> |
|
| 230 |
+ <internalNodes> |
|
| 231 |
+ 0 -1 9 -89138513 -4196353 1256531674 -1330665426 1216308261 |
|
| 232 |
+ -36190633 33498198 -151796633</internalNodes> |
|
| 233 |
+ <leafValues> |
|
| 234 |
+ -0.5344601869583130 0.4672054052352905</leafValues></_></weakClassifiers></_> |
|
| 235 |
+ <!-- stage 6 --> |
|
| 236 |
+ <_> |
|
| 237 |
+ <maxWeakCount>5</maxWeakCount> |
|
| 238 |
+ <stageThreshold>-0.8776460289955139</stageThreshold> |
|
| 239 |
+ <weakClassifiers> |
|
| 240 |
+ <!-- tree 0 --> |
|
| 241 |
+ <_> |
|
| 242 |
+ <internalNodes> |
|
| 243 |
+ 0 -1 105 1073769576 206601725 -34013449 -33554433 -789514004 |
|
| 244 |
+ -101384321 -690225153 -264193</internalNodes> |
|
| 245 |
+ <leafValues> |
|
| 246 |
+ -0.7700348496437073 0.5943940877914429</leafValues></_> |
|
| 247 |
+ <!-- tree 1 --> |
|
| 248 |
+ <_> |
|
| 249 |
+ <internalNodes> |
|
| 250 |
+ 0 -1 30 -1432340997 -823623681 -49153 -34291724 -269484035 |
|
| 251 |
+ -1342767105 -1078198273 -1277955</internalNodes> |
|
| 252 |
+ <leafValues> |
|
| 253 |
+ -0.5043668746948242 0.6151274442672730</leafValues></_> |
|
| 254 |
+ <!-- tree 2 --> |
|
| 255 |
+ <_> |
|
| 256 |
+ <internalNodes> |
|
| 257 |
+ 0 -1 35 -1067385040 -195758209 -436748425 -134217731 |
|
| 258 |
+ -50855988 -129 -1 -1</internalNodes> |
|
| 259 |
+ <leafValues> |
|
| 260 |
+ -0.6808040738105774 0.4667325913906097</leafValues></_> |
|
| 261 |
+ <!-- tree 3 --> |
|
| 262 |
+ <_> |
|
| 263 |
+ <internalNodes> |
|
| 264 |
+ 0 -1 119 832534325 -34111555 -26050561 -423659521 -268468364 |
|
| 265 |
+ 2105014143 -2114244 -17367185</internalNodes> |
|
| 266 |
+ <leafValues> |
|
| 267 |
+ -0.4927591383457184 0.5401885509490967</leafValues></_> |
|
| 268 |
+ <!-- tree 4 --> |
|
| 269 |
+ <_> |
|
| 270 |
+ <internalNodes> |
|
| 271 |
+ 0 -1 82 -1089439888 -1080524865 2143059967 -1114121 |
|
| 272 |
+ -1140949004 -3 -2361356 -739516</internalNodes> |
|
| 273 |
+ <leafValues> |
|
| 274 |
+ -0.6445107460021973 0.4227822124958038</leafValues></_></weakClassifiers></_> |
|
| 275 |
+ <!-- stage 7 --> |
|
| 276 |
+ <_> |
|
| 277 |
+ <maxWeakCount>6</maxWeakCount> |
|
| 278 |
+ <stageThreshold>-1.1139287948608398</stageThreshold> |
|
| 279 |
+ <weakClassifiers> |
|
| 280 |
+ <!-- tree 0 --> |
|
| 281 |
+ <_> |
|
| 282 |
+ <internalNodes> |
|
| 283 |
+ 0 -1 52 -1074071553 -1074003969 -1 -1280135430 -5324817 -1 |
|
| 284 |
+ -335548482 582134442</internalNodes> |
|
| 285 |
+ <leafValues> |
|
| 286 |
+ -0.5307556986808777 0.6258179545402527</leafValues></_> |
|
| 287 |
+ <!-- tree 1 --> |
|
| 288 |
+ <_> |
|
| 289 |
+ <internalNodes> |
|
| 290 |
+ 0 -1 99 -706937396 -705364068 -540016724 -570495027 |
|
| 291 |
+ -570630659 -587857963 -33628164 -35848193</internalNodes> |
|
| 292 |
+ <leafValues> |
|
| 293 |
+ -0.5227634310722351 0.5049746036529541</leafValues></_> |
|
| 294 |
+ <!-- tree 2 --> |
|
| 295 |
+ <_> |
|
| 296 |
+ <internalNodes> |
|
| 297 |
+ 0 -1 18 -2035630093 42119158 -268503053 -1671444 261017599 |
|
| 298 |
+ 1325432815 1954394111 -805306449</internalNodes> |
|
| 299 |
+ <leafValues> |
|
| 300 |
+ -0.4983572661876679 0.5106441378593445</leafValues></_> |
|
| 301 |
+ <!-- tree 3 --> |
|
| 302 |
+ <_> |
|
| 303 |
+ <internalNodes> |
|
| 304 |
+ 0 -1 111 -282529488 -1558073088 1426018736 -170526448 |
|
| 305 |
+ -546832487 -5113037 -34243375 -570427929</internalNodes> |
|
| 306 |
+ <leafValues> |
|
| 307 |
+ -0.4990860521793366 0.5060507059097290</leafValues></_> |
|
| 308 |
+ <!-- tree 4 --> |
|
| 309 |
+ <_> |
|
| 310 |
+ <internalNodes> |
|
| 311 |
+ 0 -1 92 1016332500 -606301707 915094269 -1080086049 |
|
| 312 |
+ -1837027144 -1361600280 2147318747 1067975613</internalNodes> |
|
| 313 |
+ <leafValues> |
|
| 314 |
+ -0.5695009231567383 0.4460467398166657</leafValues></_> |
|
| 315 |
+ <!-- tree 5 --> |
|
| 316 |
+ <_> |
|
| 317 |
+ <internalNodes> |
|
| 318 |
+ 0 -1 51 -656420166 -15413034 -141599534 -603435836 |
|
| 319 |
+ 1505950458 -787556946 -79823438 -1326199134</internalNodes> |
|
| 320 |
+ <leafValues> |
|
| 321 |
+ -0.6590405106544495 0.3616424500942230</leafValues></_></weakClassifiers></_> |
|
| 322 |
+ <!-- stage 8 --> |
|
| 323 |
+ <_> |
|
| 324 |
+ <maxWeakCount>7</maxWeakCount> |
|
| 325 |
+ <stageThreshold>-0.8243625760078430</stageThreshold> |
|
| 326 |
+ <weakClassifiers> |
|
| 327 |
+ <!-- tree 0 --> |
|
| 328 |
+ <_> |
|
| 329 |
+ <internalNodes> |
|
| 330 |
+ 0 -1 28 -901591776 -201916417 -262 -67371009 -143312112 |
|
| 331 |
+ -524289 -41943178 -1</internalNodes> |
|
| 332 |
+ <leafValues> |
|
| 333 |
+ -0.4972776770591736 0.6027074456214905</leafValues></_> |
|
| 334 |
+ <!-- tree 1 --> |
|
| 335 |
+ <_> |
|
| 336 |
+ <internalNodes> |
|
| 337 |
+ 0 -1 112 -4507851 -411340929 -268437513 -67502145 -17350859 |
|
| 338 |
+ -32901 -71344315 -29377</internalNodes> |
|
| 339 |
+ <leafValues> |
|
| 340 |
+ -0.4383158981800079 0.5966237187385559</leafValues></_> |
|
| 341 |
+ <!-- tree 2 --> |
|
| 342 |
+ <_> |
|
| 343 |
+ <internalNodes> |
|
| 344 |
+ 0 -1 69 -75894785 -117379438 -239063587 -12538500 1485072126 |
|
| 345 |
+ 2076233213 2123118847 801906927</internalNodes> |
|
| 346 |
+ <leafValues> |
|
| 347 |
+ -0.6386105418205261 0.3977999985218048</leafValues></_> |
|
| 348 |
+ <!-- tree 3 --> |
|
| 349 |
+ <_> |
|
| 350 |
+ <internalNodes> |
|
| 351 |
+ 0 -1 19 -823480413 786628589 -16876049 -1364262914 242165211 |
|
| 352 |
+ 1315930109 -696268833 -455082829</internalNodes> |
|
| 353 |
+ <leafValues> |
|
| 354 |
+ -0.5512794256210327 0.4282079637050629</leafValues></_> |
|
| 355 |
+ <!-- tree 4 --> |
|
| 356 |
+ <_> |
|
| 357 |
+ <internalNodes> |
|
| 358 |
+ 0 -1 73 -521411968 6746762 -1396236286 -2038436114 |
|
| 359 |
+ -185612509 57669627 -143132877 -1041235973</internalNodes> |
|
| 360 |
+ <leafValues> |
|
| 361 |
+ -0.6418755054473877 0.3549866080284119</leafValues></_> |
|
| 362 |
+ <!-- tree 5 --> |
|
| 363 |
+ <_> |
|
| 364 |
+ <internalNodes> |
|
| 365 |
+ 0 -1 126 -478153869 1076028979 -1645895615 1365298272 |
|
| 366 |
+ -557859073 -339771473 1442574528 -1058802061</internalNodes> |
|
| 367 |
+ <leafValues> |
|
| 368 |
+ -0.4841901361942291 0.4668019413948059</leafValues></_> |
|
| 369 |
+ <!-- tree 6 --> |
|
| 370 |
+ <_> |
|
| 371 |
+ <internalNodes> |
|
| 372 |
+ 0 -1 45 -246350404 -1650402048 -1610612745 -788400696 |
|
| 373 |
+ 1467604861 -2787397 1476263935 -4481349</internalNodes> |
|
| 374 |
+ <leafValues> |
|
| 375 |
+ -0.5855734348297119 0.3879135847091675</leafValues></_></weakClassifiers></_> |
|
| 376 |
+ <!-- stage 9 --> |
|
| 377 |
+ <_> |
|
| 378 |
+ <maxWeakCount>7</maxWeakCount> |
|
| 379 |
+ <stageThreshold>-1.2237116098403931</stageThreshold> |
|
| 380 |
+ <weakClassifiers> |
|
| 381 |
+ <!-- tree 0 --> |
|
| 382 |
+ <_> |
|
| 383 |
+ <internalNodes> |
|
| 384 |
+ 0 -1 114 -24819 1572863935 -16809993 -67108865 2146778388 |
|
| 385 |
+ 1433927541 -268608444 -34865205</internalNodes> |
|
| 386 |
+ <leafValues> |
|
| 387 |
+ -0.2518476545810700 0.7088654041290283</leafValues></_> |
|
| 388 |
+ <!-- tree 1 --> |
|
| 389 |
+ <_> |
|
| 390 |
+ <internalNodes> |
|
| 391 |
+ 0 -1 97 -1841359 -134271049 -32769 -5767369 -1116675 -2185 |
|
| 392 |
+ -8231 -33603327</internalNodes> |
|
| 393 |
+ <leafValues> |
|
| 394 |
+ -0.4303432404994965 0.5283288359642029</leafValues></_> |
|
| 395 |
+ <!-- tree 2 --> |
|
| 396 |
+ <_> |
|
| 397 |
+ <internalNodes> |
|
| 398 |
+ 0 -1 25 -1359507589 -1360593090 -1073778729 -269553812 |
|
| 399 |
+ -809512977 1744707583 -41959433 -134758978</internalNodes> |
|
| 400 |
+ <leafValues> |
|
| 401 |
+ -0.4259553551673889 0.5440809130668640</leafValues></_> |
|
| 402 |
+ <!-- tree 3 --> |
|
| 403 |
+ <_> |
|
| 404 |
+ <internalNodes> |
|
| 405 |
+ 0 -1 34 729753407 -134270989 -1140907329 -235200777 |
|
| 406 |
+ 658456383 2147467263 -1140900929 -16385</internalNodes> |
|
| 407 |
+ <leafValues> |
|
| 408 |
+ -0.5605589151382446 0.4220733344554901</leafValues></_> |
|
| 409 |
+ <!-- tree 4 --> |
|
| 410 |
+ <_> |
|
| 411 |
+ <internalNodes> |
|
| 412 |
+ 0 -1 134 -310380553 -420675595 -193005472 -353568129 |
|
| 413 |
+ 1205338070 -990380036 887604324 -420544526</internalNodes> |
|
| 414 |
+ <leafValues> |
|
| 415 |
+ -0.5192656517028809 0.4399855434894562</leafValues></_> |
|
| 416 |
+ <!-- tree 5 --> |
|
| 417 |
+ <_> |
|
| 418 |
+ <internalNodes> |
|
| 419 |
+ 0 -1 16 -1427119361 1978920959 -287119734 -487068946 |
|
| 420 |
+ 114759245 -540578051 -707510259 -671660453</internalNodes> |
|
| 421 |
+ <leafValues> |
|
| 422 |
+ -0.5013077259063721 0.4570254683494568</leafValues></_> |
|
| 423 |
+ <!-- tree 6 --> |
|
| 424 |
+ <_> |
|
| 425 |
+ <internalNodes> |
|
| 426 |
+ 0 -1 74 -738463762 -889949281 -328301948 -121832450 |
|
| 427 |
+ -1142658284 -1863576559 2146417353 -263185</internalNodes> |
|
| 428 |
+ <leafValues> |
|
| 429 |
+ -0.4631414115428925 0.4790246188640595</leafValues></_></weakClassifiers></_> |
|
| 430 |
+ <!-- stage 10 --> |
|
| 431 |
+ <_> |
|
| 432 |
+ <maxWeakCount>7</maxWeakCount> |
|
| 433 |
+ <stageThreshold>-0.5544230937957764</stageThreshold> |
|
| 434 |
+ <weakClassifiers> |
|
| 435 |
+ <!-- tree 0 --> |
|
| 436 |
+ <_> |
|
| 437 |
+ <internalNodes> |
|
| 438 |
+ 0 -1 113 -76228780 -65538 -1 -67174401 -148007 -33 -221796 |
|
| 439 |
+ -272842924</internalNodes> |
|
| 440 |
+ <leafValues> |
|
| 441 |
+ -0.3949716091156006 0.6082032322883606</leafValues></_> |
|
| 442 |
+ <!-- tree 1 --> |
|
| 443 |
+ <_> |
|
| 444 |
+ <internalNodes> |
|
| 445 |
+ 0 -1 110 369147696 -1625232112 2138570036 -1189900 790708019 |
|
| 446 |
+ -1212613127 799948719 -4456483</internalNodes> |
|
| 447 |
+ <leafValues> |
|
| 448 |
+ -0.4855885505676270 0.4785369932651520</leafValues></_> |
|
| 449 |
+ <!-- tree 2 --> |
|
| 450 |
+ <_> |
|
| 451 |
+ <internalNodes> |
|
| 452 |
+ 0 -1 37 784215839 -290015241 536832799 -402984963 |
|
| 453 |
+ -1342414991 -838864897 -176769 -268456129</internalNodes> |
|
| 454 |
+ <leafValues> |
|
| 455 |
+ -0.4620285332202911 0.4989669024944305</leafValues></_> |
|
| 456 |
+ <!-- tree 3 --> |
|
| 457 |
+ <_> |
|
| 458 |
+ <internalNodes> |
|
| 459 |
+ 0 -1 41 -486418688 -171915327 -340294900 -21938 -519766032 |
|
| 460 |
+ -772751172 -73096060 -585322623</internalNodes> |
|
| 461 |
+ <leafValues> |
|
| 462 |
+ -0.6420643329620361 0.3624351918697357</leafValues></_> |
|
| 463 |
+ <!-- tree 4 --> |
|
| 464 |
+ <_> |
|
| 465 |
+ <internalNodes> |
|
| 466 |
+ 0 -1 117 -33554953 -475332625 -1423463824 -2077230421 |
|
| 467 |
+ -4849669 -2080505925 -219032928 -1071915349</internalNodes> |
|
| 468 |
+ <leafValues> |
|
| 469 |
+ -0.4820112884044647 0.4632140696048737</leafValues></_> |
|
| 470 |
+ <!-- tree 5 --> |
|
| 471 |
+ <_> |
|
| 472 |
+ <internalNodes> |
|
| 473 |
+ 0 -1 65 -834130468 -134217476 -1349314083 -1073803559 |
|
| 474 |
+ -619913764 -1449131844 -1386890321 -1979118423</internalNodes> |
|
| 475 |
+ <leafValues> |
|
| 476 |
+ -0.4465552568435669 0.5061788558959961</leafValues></_> |
|
| 477 |
+ <!-- tree 6 --> |
|
| 478 |
+ <_> |
|
| 479 |
+ <internalNodes> |
|
| 480 |
+ 0 -1 56 -285249779 1912569855 -16530 -1731022870 -1161904146 |
|
| 481 |
+ -1342177297 -268439634 -1464078708</internalNodes> |
|
| 482 |
+ <leafValues> |
|
| 483 |
+ -0.5190586447715759 0.4441480338573456</leafValues></_></weakClassifiers></_> |
|
| 484 |
+ <!-- stage 11 --> |
|
| 485 |
+ <_> |
|
| 486 |
+ <maxWeakCount>7</maxWeakCount> |
|
| 487 |
+ <stageThreshold>-0.7161560654640198</stageThreshold> |
|
| 488 |
+ <weakClassifiers> |
|
| 489 |
+ <!-- tree 0 --> |
|
| 490 |
+ <_> |
|
| 491 |
+ <internalNodes> |
|
| 492 |
+ 0 -1 20 1246232575 1078001186 -10027057 60102 -277348353 |
|
| 493 |
+ -43646987 -1210581153 1195769615</internalNodes> |
|
| 494 |
+ <leafValues> |
|
| 495 |
+ -0.4323809444904327 0.5663768053054810</leafValues></_> |
|
| 496 |
+ <!-- tree 1 --> |
|
| 497 |
+ <_> |
|
| 498 |
+ <internalNodes> |
|
| 499 |
+ 0 -1 15 -778583572 -612921106 -578775890 -4036478 |
|
| 500 |
+ -1946580497 -1164766570 -1986687009 -12103599</internalNodes> |
|
| 501 |
+ <leafValues> |
|
| 502 |
+ -0.4588732719421387 0.4547033011913300</leafValues></_> |
|
| 503 |
+ <!-- tree 2 --> |
|
| 504 |
+ <_> |
|
| 505 |
+ <internalNodes> |
|
| 506 |
+ 0 -1 129 -1073759445 2013231743 -1363169553 -1082459201 |
|
| 507 |
+ -1414286549 868185983 -1356133589 -1077936257</internalNodes> |
|
| 508 |
+ <leafValues> |
|
| 509 |
+ -0.5218553543090820 0.4111092388629913</leafValues></_> |
|
| 510 |
+ <!-- tree 3 --> |
|
| 511 |
+ <_> |
|
| 512 |
+ <internalNodes> |
|
| 513 |
+ 0 -1 102 -84148365 -2093417722 -1204850272 564290299 |
|
| 514 |
+ -67121221 -1342177350 -1309195902 -776734797</internalNodes> |
|
| 515 |
+ <leafValues> |
|
| 516 |
+ -0.4920000731945038 0.4326725304126740</leafValues></_> |
|
| 517 |
+ <!-- tree 4 --> |
|
| 518 |
+ <_> |
|
| 519 |
+ <internalNodes> |
|
| 520 |
+ 0 -1 88 -25694458 67104495 -290216278 -168563037 2083877442 |
|
| 521 |
+ 1702788383 -144191964 -234882162</internalNodes> |
|
| 522 |
+ <leafValues> |
|
| 523 |
+ -0.4494568109512329 0.4448510706424713</leafValues></_> |
|
| 524 |
+ <!-- tree 5 --> |
|
| 525 |
+ <_> |
|
| 526 |
+ <internalNodes> |
|
| 527 |
+ 0 -1 59 -857980836 904682741 -1612267521 232279415 |
|
| 528 |
+ 1550862252 -574825221 -357380888 -4579409</internalNodes> |
|
| 529 |
+ <leafValues> |
|
| 530 |
+ -0.5180826783180237 0.3888972699642181</leafValues></_> |
|
| 531 |
+ <!-- tree 6 --> |
|
| 532 |
+ <_> |
|
| 533 |
+ <internalNodes> |
|
| 534 |
+ 0 -1 27 -98549440 -137838400 494928389 -246013630 939541351 |
|
| 535 |
+ -1196072350 -620603549 2137216273</internalNodes> |
|
| 536 |
+ <leafValues> |
|
| 537 |
+ -0.6081240773200989 0.3333222270011902</leafValues></_></weakClassifiers></_> |
|
| 538 |
+ <!-- stage 12 --> |
|
| 539 |
+ <_> |
|
| 540 |
+ <maxWeakCount>8</maxWeakCount> |
|
| 541 |
+ <stageThreshold>-0.6743940711021423</stageThreshold> |
|
| 542 |
+ <weakClassifiers> |
|
| 543 |
+ <!-- tree 0 --> |
|
| 544 |
+ <_> |
|
| 545 |
+ <internalNodes> |
|
| 546 |
+ 0 -1 29 -150995201 2071191945 -1302151626 536934335 |
|
| 547 |
+ -1059008937 914128709 1147328110 -268369925</internalNodes> |
|
| 548 |
+ <leafValues> |
|
| 549 |
+ -0.1790193915367127 0.6605972051620483</leafValues></_> |
|
| 550 |
+ <!-- tree 1 --> |
|
| 551 |
+ <_> |
|
| 552 |
+ <internalNodes> |
|
| 553 |
+ 0 -1 128 -134509479 1610575703 -1342177289 1861484541 |
|
| 554 |
+ -1107833788 1577058173 -333558568 -136319041</internalNodes> |
|
| 555 |
+ <leafValues> |
|
| 556 |
+ -0.3681024610996246 0.5139749646186829</leafValues></_> |
|
| 557 |
+ <!-- tree 2 --> |
|
| 558 |
+ <_> |
|
| 559 |
+ <internalNodes> |
|
| 560 |
+ 0 -1 70 -1 1060154476 -1090984524 -630918524 -539492875 |
|
| 561 |
+ 779616255 -839568424 -321</internalNodes> |
|
| 562 |
+ <leafValues> |
|
| 563 |
+ -0.3217232525348663 0.6171553134918213</leafValues></_> |
|
| 564 |
+ <!-- tree 3 --> |
|
| 565 |
+ <_> |
|
| 566 |
+ <internalNodes> |
|
| 567 |
+ 0 -1 4 -269562385 -285029906 -791084350 -17923776 235286671 |
|
| 568 |
+ 1275504943 1344390399 -966276889</internalNodes> |
|
| 569 |
+ <leafValues> |
|
| 570 |
+ -0.4373284578323364 0.4358185231685638</leafValues></_> |
|
| 571 |
+ <!-- tree 4 --> |
|
| 572 |
+ <_> |
|
| 573 |
+ <internalNodes> |
|
| 574 |
+ 0 -1 76 17825984 -747628419 595427229 1474759671 575672208 |
|
| 575 |
+ -1684005538 872217086 -1155858277</internalNodes> |
|
| 576 |
+ <leafValues> |
|
| 577 |
+ -0.4404836893081665 0.4601220190525055</leafValues></_> |
|
| 578 |
+ <!-- tree 5 --> |
|
| 579 |
+ <_> |
|
| 580 |
+ <internalNodes> |
|
| 581 |
+ 0 -1 124 -336593039 1873735591 -822231622 -355795238 |
|
| 582 |
+ -470820869 -1997537409 -1057132384 -1015285005</internalNodes> |
|
| 583 |
+ <leafValues> |
|
| 584 |
+ -0.4294152259826660 0.4452161788940430</leafValues></_> |
|
| 585 |
+ <!-- tree 6 --> |
|
| 586 |
+ <_> |
|
| 587 |
+ <internalNodes> |
|
| 588 |
+ 0 -1 54 -834212130 -593694721 -322142257 -364892500 |
|
| 589 |
+ -951029539 -302125121 -1615106053 -79249765</internalNodes> |
|
| 590 |
+ <leafValues> |
|
| 591 |
+ -0.3973052501678467 0.4854526817798615</leafValues></_> |
|
| 592 |
+ <!-- tree 7 --> |
|
| 593 |
+ <_> |
|
| 594 |
+ <internalNodes> |
|
| 595 |
+ 0 -1 95 1342144479 2147431935 -33554561 -47873 -855685912 -1 |
|
| 596 |
+ 1988052447 536827383</internalNodes> |
|
| 597 |
+ <leafValues> |
|
| 598 |
+ -0.7054683566093445 0.2697997391223908</leafValues></_></weakClassifiers></_> |
|
| 599 |
+ <!-- stage 13 --> |
|
| 600 |
+ <_> |
|
| 601 |
+ <maxWeakCount>9</maxWeakCount> |
|
| 602 |
+ <stageThreshold>-1.2042298316955566</stageThreshold> |
|
| 603 |
+ <weakClassifiers> |
|
| 604 |
+ <!-- tree 0 --> |
|
| 605 |
+ <_> |
|
| 606 |
+ <internalNodes> |
|
| 607 |
+ 0 -1 39 1431368960 -183437936 -537002499 -137497097 |
|
| 608 |
+ 1560590321 -84611081 -2097193 -513</internalNodes> |
|
| 609 |
+ <leafValues> |
|
| 610 |
+ -0.5905947685241699 0.5101932883262634</leafValues></_> |
|
| 611 |
+ <!-- tree 1 --> |
|
| 612 |
+ <_> |
|
| 613 |
+ <internalNodes> |
|
| 614 |
+ 0 -1 120 -1645259691 2105491231 2130706431 1458995007 |
|
| 615 |
+ -8567536 -42483883 -33780003 -21004417</internalNodes> |
|
| 616 |
+ <leafValues> |
|
| 617 |
+ -0.4449204802513123 0.4490709304809570</leafValues></_> |
|
| 618 |
+ <!-- tree 2 --> |
|
| 619 |
+ <_> |
|
| 620 |
+ <internalNodes> |
|
| 621 |
+ 0 -1 89 -612381022 -505806938 -362027516 -452985106 |
|
| 622 |
+ 275854917 1920431639 -12600561 -134221825</internalNodes> |
|
| 623 |
+ <leafValues> |
|
| 624 |
+ -0.4693818688392639 0.4061094820499420</leafValues></_> |
|
| 625 |
+ <!-- tree 3 --> |
|
| 626 |
+ <_> |
|
| 627 |
+ <internalNodes> |
|
| 628 |
+ 0 -1 14 -805573153 -161 -554172679 -530519488 -16779441 |
|
| 629 |
+ 2000682871 -33604275 -150997129</internalNodes> |
|
| 630 |
+ <leafValues> |
|
| 631 |
+ -0.3600351214408875 0.5056326985359192</leafValues></_> |
|
| 632 |
+ <!-- tree 4 --> |
|
| 633 |
+ <_> |
|
| 634 |
+ <internalNodes> |
|
| 635 |
+ 0 -1 67 6192 435166195 1467449341 2046691505 -1608493775 |
|
| 636 |
+ -4755729 -1083162625 -71365637</internalNodes> |
|
| 637 |
+ <leafValues> |
|
| 638 |
+ -0.4459891915321350 0.4132415652275085</leafValues></_> |
|
| 639 |
+ <!-- tree 5 --> |
|
| 640 |
+ <_> |
|
| 641 |
+ <internalNodes> |
|
| 642 |
+ 0 -1 86 -41689215 -3281034 1853357967 -420712635 -415924289 |
|
| 643 |
+ -270209208 -1088293113 -825311232</internalNodes> |
|
| 644 |
+ <leafValues> |
|
| 645 |
+ -0.4466069042682648 0.4135067760944367</leafValues></_> |
|
| 646 |
+ <!-- tree 6 --> |
|
| 647 |
+ <_> |
|
| 648 |
+ <internalNodes> |
|
| 649 |
+ 0 -1 80 -117391116 -42203396 2080374461 -188709 -542008165 |
|
| 650 |
+ -356831940 -1091125345 -1073796897</internalNodes> |
|
| 651 |
+ <leafValues> |
|
| 652 |
+ -0.3394956290721893 0.5658645033836365</leafValues></_> |
|
| 653 |
+ <!-- tree 7 --> |
|
| 654 |
+ <_> |
|
| 655 |
+ <internalNodes> |
|
| 656 |
+ 0 -1 75 -276830049 1378714472 -1342181951 757272098 |
|
| 657 |
+ 1073740607 -282199241 -415761549 170896931</internalNodes> |
|
| 658 |
+ <leafValues> |
|
| 659 |
+ -0.5346512198448181 0.3584479391574860</leafValues></_> |
|
| 660 |
+ <!-- tree 8 --> |
|
| 661 |
+ <_> |
|
| 662 |
+ <internalNodes> |
|
| 663 |
+ 0 -1 55 -796075825 -123166849 2113667055 -217530421 |
|
| 664 |
+ -1107432194 -16385 -806359809 -391188771</internalNodes> |
|
| 665 |
+ <leafValues> |
|
| 666 |
+ -0.4379335641860962 0.4123645126819611</leafValues></_></weakClassifiers></_> |
|
| 667 |
+ <!-- stage 14 --> |
|
| 668 |
+ <_> |
|
| 669 |
+ <maxWeakCount>10</maxWeakCount> |
|
| 670 |
+ <stageThreshold>-0.8402050137519836</stageThreshold> |
|
| 671 |
+ <weakClassifiers> |
|
| 672 |
+ <!-- tree 0 --> |
|
| 673 |
+ <_> |
|
| 674 |
+ <internalNodes> |
|
| 675 |
+ 0 -1 71 -890246622 15525883 -487690486 47116238 -1212319899 |
|
| 676 |
+ -1291847681 -68159890 -469829921</internalNodes> |
|
| 677 |
+ <leafValues> |
|
| 678 |
+ -0.2670986354351044 0.6014143228530884</leafValues></_> |
|
| 679 |
+ <!-- tree 1 --> |
|
| 680 |
+ <_> |
|
| 681 |
+ <internalNodes> |
|
| 682 |
+ 0 -1 31 -1361180685 -1898008841 -1090588811 -285410071 |
|
| 683 |
+ -1074016265 -840443905 2147221487 -262145</internalNodes> |
|
| 684 |
+ <leafValues> |
|
| 685 |
+ -0.4149844348430634 0.4670888185501099</leafValues></_> |
|
| 686 |
+ <!-- tree 2 --> |
|
| 687 |
+ <_> |
|
| 688 |
+ <internalNodes> |
|
| 689 |
+ 0 -1 40 1426190596 1899364271 2142731795 -142607505 |
|
| 690 |
+ -508232452 -21563393 -41960001 -65</internalNodes> |
|
| 691 |
+ <leafValues> |
|
| 692 |
+ -0.4985891580581665 0.3719584941864014</leafValues></_> |
|
| 693 |
+ <!-- tree 3 --> |
|
| 694 |
+ <_> |
|
| 695 |
+ <internalNodes> |
|
| 696 |
+ 0 -1 109 -201337965 10543906 -236498096 -746195597 |
|
| 697 |
+ 1974565825 -15204415 921907633 -190058309</internalNodes> |
|
| 698 |
+ <leafValues> |
|
| 699 |
+ -0.4568729996681213 0.3965812027454376</leafValues></_> |
|
| 700 |
+ <!-- tree 4 --> |
|
| 701 |
+ <_> |
|
| 702 |
+ <internalNodes> |
|
| 703 |
+ 0 -1 130 -595026732 -656401928 -268649235 -571490699 |
|
| 704 |
+ -440600392 -133131 -358810952 -2004088646</internalNodes> |
|
| 705 |
+ <leafValues> |
|
| 706 |
+ -0.4770836830139160 0.3862601518630981</leafValues></_> |
|
| 707 |
+ <!-- tree 5 --> |
|
| 708 |
+ <_> |
|
| 709 |
+ <internalNodes> |
|
| 710 |
+ 0 -1 66 941674740 -1107882114 1332789109 -67691015 |
|
| 711 |
+ -1360463693 -1556612430 -609108546 733546933</internalNodes> |
|
| 712 |
+ <leafValues> |
|
| 713 |
+ -0.4877715110778809 0.3778986334800720</leafValues></_> |
|
| 714 |
+ <!-- tree 6 --> |
|
| 715 |
+ <_> |
|
| 716 |
+ <internalNodes> |
|
| 717 |
+ 0 -1 49 -17114945 -240061474 1552871558 -82775604 -932393844 |
|
| 718 |
+ -1308544889 -532635478 -99042357</internalNodes> |
|
| 719 |
+ <leafValues> |
|
| 720 |
+ -0.3721654713153839 0.4994400143623352</leafValues></_> |
|
| 721 |
+ <!-- tree 7 --> |
|
| 722 |
+ <_> |
|
| 723 |
+ <internalNodes> |
|
| 724 |
+ 0 -1 133 -655906006 1405502603 -939205164 1884929228 |
|
| 725 |
+ -498859222 559417357 -1928559445 -286264385</internalNodes> |
|
| 726 |
+ <leafValues> |
|
| 727 |
+ -0.3934195041656494 0.4769641458988190</leafValues></_> |
|
| 728 |
+ <!-- tree 8 --> |
|
| 729 |
+ <_> |
|
| 730 |
+ <internalNodes> |
|
| 731 |
+ 0 -1 0 -335837777 1860677295 -90 -1946186226 931096183 |
|
| 732 |
+ 251612987 2013265917 -671232197</internalNodes> |
|
| 733 |
+ <leafValues> |
|
| 734 |
+ -0.4323300719261169 0.4342164099216461</leafValues></_> |
|
| 735 |
+ <!-- tree 9 --> |
|
| 736 |
+ <_> |
|
| 737 |
+ <internalNodes> |
|
| 738 |
+ 0 -1 103 37769424 -137772680 374692301 2002666345 -536176194 |
|
| 739 |
+ -1644484728 807009019 1069089930</internalNodes> |
|
| 740 |
+ <leafValues> |
|
| 741 |
+ -0.4993278682231903 0.3665378093719482</leafValues></_></weakClassifiers></_> |
|
| 742 |
+ <!-- stage 15 --> |
|
| 743 |
+ <_> |
|
| 744 |
+ <maxWeakCount>9</maxWeakCount> |
|
| 745 |
+ <stageThreshold>-1.1974394321441650</stageThreshold> |
|
| 746 |
+ <weakClassifiers> |
|
| 747 |
+ <!-- tree 0 --> |
|
| 748 |
+ <_> |
|
| 749 |
+ <internalNodes> |
|
| 750 |
+ 0 -1 43 -5505 2147462911 2143265466 -4511070 -16450 -257 |
|
| 751 |
+ -201348440 -71333206</internalNodes> |
|
| 752 |
+ <leafValues> |
|
| 753 |
+ -0.3310225307941437 0.5624626278877258</leafValues></_> |
|
| 754 |
+ <!-- tree 1 --> |
|
| 755 |
+ <_> |
|
| 756 |
+ <internalNodes> |
|
| 757 |
+ 0 -1 90 -136842268 -499330741 2015250980 -87107126 |
|
| 758 |
+ -641665744 -788524639 -1147864792 -134892563</internalNodes> |
|
| 759 |
+ <leafValues> |
|
| 760 |
+ -0.5266560912132263 0.3704403042793274</leafValues></_> |
|
| 761 |
+ <!-- tree 2 --> |
|
| 762 |
+ <_> |
|
| 763 |
+ <internalNodes> |
|
| 764 |
+ 0 -1 104 -146800880 -1780368555 2111170033 -140904684 |
|
| 765 |
+ -16777551 -1946681885 -1646463595 -839131947</internalNodes> |
|
| 766 |
+ <leafValues> |
|
| 767 |
+ -0.4171888828277588 0.4540435671806335</leafValues></_> |
|
| 768 |
+ <!-- tree 3 --> |
|
| 769 |
+ <_> |
|
| 770 |
+ <internalNodes> |
|
| 771 |
+ 0 -1 85 -832054034 -981663763 -301990281 -578814081 |
|
| 772 |
+ -932319000 -1997406723 -33555201 -69206017</internalNodes> |
|
| 773 |
+ <leafValues> |
|
| 774 |
+ -0.4556705355644226 0.3704262077808380</leafValues></_> |
|
| 775 |
+ <!-- tree 4 --> |
|
| 776 |
+ <_> |
|
| 777 |
+ <internalNodes> |
|
| 778 |
+ 0 -1 24 -118492417 -1209026825 1119023838 -1334313353 |
|
| 779 |
+ 1112948738 -297319313 1378887291 -139469193</internalNodes> |
|
| 780 |
+ <leafValues> |
|
| 781 |
+ -0.4182529747486115 0.4267231225967407</leafValues></_> |
|
| 782 |
+ <!-- tree 5 --> |
|
| 783 |
+ <_> |
|
| 784 |
+ <internalNodes> |
|
| 785 |
+ 0 -1 78 -1714382628 -2353704 -112094959 -549613092 |
|
| 786 |
+ -1567058760 -1718550464 -342315012 -1074972227</internalNodes> |
|
| 787 |
+ <leafValues> |
|
| 788 |
+ -0.3625369668006897 0.4684656262397766</leafValues></_> |
|
| 789 |
+ <!-- tree 6 --> |
|
| 790 |
+ <_> |
|
| 791 |
+ <internalNodes> |
|
| 792 |
+ 0 -1 5 -85219702 316836394 -33279 1904970288 2117267315 |
|
| 793 |
+ -260901769 -621461759 -88607770</internalNodes> |
|
| 794 |
+ <leafValues> |
|
| 795 |
+ -0.4742925167083740 0.3689507246017456</leafValues></_> |
|
| 796 |
+ <!-- tree 7 --> |
|
| 797 |
+ <_> |
|
| 798 |
+ <internalNodes> |
|
| 799 |
+ 0 -1 11 -294654041 -353603585 -1641159686 -50331921 |
|
| 800 |
+ -2080899877 1145569279 -143132713 -152044037</internalNodes> |
|
| 801 |
+ <leafValues> |
|
| 802 |
+ -0.3666271567344666 0.4580127298831940</leafValues></_> |
|
| 803 |
+ <!-- tree 8 --> |
|
| 804 |
+ <_> |
|
| 805 |
+ <internalNodes> |
|
| 806 |
+ 0 -1 32 1887453658 -638545712 -1877976819 -34320972 |
|
| 807 |
+ -1071067983 -661345416 -583338277 1060190561</internalNodes> |
|
| 808 |
+ <leafValues> |
|
| 809 |
+ -0.4567637443542481 0.3894708156585693</leafValues></_></weakClassifiers></_> |
|
| 810 |
+ <!-- stage 16 --> |
|
| 811 |
+ <_> |
|
| 812 |
+ <maxWeakCount>9</maxWeakCount> |
|
| 813 |
+ <stageThreshold>-0.5733128190040588</stageThreshold> |
|
| 814 |
+ <weakClassifiers> |
|
| 815 |
+ <!-- tree 0 --> |
|
| 816 |
+ <_> |
|
| 817 |
+ <internalNodes> |
|
| 818 |
+ 0 -1 122 -994063296 1088745462 -318837116 -319881377 |
|
| 819 |
+ 1102566613 1165490103 -121679694 -134744129</internalNodes> |
|
| 820 |
+ <leafValues> |
|
| 821 |
+ -0.4055117964744568 0.5487945079803467</leafValues></_> |
|
| 822 |
+ <!-- tree 1 --> |
|
| 823 |
+ <_> |
|
| 824 |
+ <internalNodes> |
|
| 825 |
+ 0 -1 68 -285233233 -538992907 1811935199 -369234005 -529 |
|
| 826 |
+ -20593 -20505 -1561401854</internalNodes> |
|
| 827 |
+ <leafValues> |
|
| 828 |
+ -0.3787897229194641 0.4532003402709961</leafValues></_> |
|
| 829 |
+ <!-- tree 2 --> |
|
| 830 |
+ <_> |
|
| 831 |
+ <internalNodes> |
|
| 832 |
+ 0 -1 58 -1335245632 1968917183 1940861695 536816369 |
|
| 833 |
+ -1226071367 -570908176 457026619 1000020667</internalNodes> |
|
| 834 |
+ <leafValues> |
|
| 835 |
+ -0.4258328974246979 0.4202791750431061</leafValues></_> |
|
| 836 |
+ <!-- tree 3 --> |
|
| 837 |
+ <_> |
|
| 838 |
+ <internalNodes> |
|
| 839 |
+ 0 -1 94 -1360318719 -1979797897 -50435249 -18646473 |
|
| 840 |
+ -608879292 -805306691 -269304244 -17840167</internalNodes> |
|
| 841 |
+ <leafValues> |
|
| 842 |
+ -0.4561023116111755 0.4002747833728790</leafValues></_> |
|
| 843 |
+ <!-- tree 4 --> |
|
| 844 |
+ <_> |
|
| 845 |
+ <internalNodes> |
|
| 846 |
+ 0 -1 87 2062765935 -16449 -1275080721 -16406 45764335 |
|
| 847 |
+ -1090552065 -772846337 -570464322</internalNodes> |
|
| 848 |
+ <leafValues> |
|
| 849 |
+ -0.4314672648906708 0.4086346626281738</leafValues></_> |
|
| 850 |
+ <!-- tree 5 --> |
|
| 851 |
+ <_> |
|
| 852 |
+ <internalNodes> |
|
| 853 |
+ 0 -1 127 -536896021 1080817663 -738234288 -965478709 |
|
| 854 |
+ -2082767969 1290855887 1993822934 -990381609</internalNodes> |
|
| 855 |
+ <leafValues> |
|
| 856 |
+ -0.4174543321132660 0.4249868988990784</leafValues></_> |
|
| 857 |
+ <!-- tree 6 --> |
|
| 858 |
+ <_> |
|
| 859 |
+ <internalNodes> |
|
| 860 |
+ 0 -1 3 -818943025 168730891 -293610428 -79249354 669224671 |
|
| 861 |
+ 621166734 1086506807 1473768907</internalNodes> |
|
| 862 |
+ <leafValues> |
|
| 863 |
+ -0.4321364760398865 0.4090838730335236</leafValues></_> |
|
| 864 |
+ <!-- tree 7 --> |
|
| 865 |
+ <_> |
|
| 866 |
+ <internalNodes> |
|
| 867 |
+ 0 -1 79 -68895696 -67107736 -1414315879 -841676168 |
|
| 868 |
+ -619843344 -1180610531 -1081990469 1043203389</internalNodes> |
|
| 869 |
+ <leafValues> |
|
| 870 |
+ -0.5018386244773865 0.3702533841133118</leafValues></_> |
|
| 871 |
+ <!-- tree 8 --> |
|
| 872 |
+ <_> |
|
| 873 |
+ <internalNodes> |
|
| 874 |
+ 0 -1 116 -54002134 -543485719 -2124882422 -1437445858 |
|
| 875 |
+ -115617074 -1195787391 -1096024366 -2140472445</internalNodes> |
|
| 876 |
+ <leafValues> |
|
| 877 |
+ -0.5037505626678467 0.3564981222152710</leafValues></_></weakClassifiers></_> |
|
| 878 |
+ <!-- stage 17 --> |
|
| 879 |
+ <_> |
|
| 880 |
+ <maxWeakCount>9</maxWeakCount> |
|
| 881 |
+ <stageThreshold>-0.4892596900463104</stageThreshold> |
|
| 882 |
+ <weakClassifiers> |
|
| 883 |
+ <!-- tree 0 --> |
|
| 884 |
+ <_> |
|
| 885 |
+ <internalNodes> |
|
| 886 |
+ 0 -1 132 -67113211 2003808111 1862135111 846461923 -2752 |
|
| 887 |
+ 2002237273 -273154752 1937223539</internalNodes> |
|
| 888 |
+ <leafValues> |
|
| 889 |
+ -0.2448196411132813 0.5689709186553955</leafValues></_> |
|
| 890 |
+ <!-- tree 1 --> |
|
| 891 |
+ <_> |
|
| 892 |
+ <internalNodes> |
|
| 893 |
+ 0 -1 62 1179423888 -78064940 -611839555 -539167899 |
|
| 894 |
+ -1289358360 -1650810108 -892540499 -1432827684</internalNodes> |
|
| 895 |
+ <leafValues> |
|
| 896 |
+ -0.4633283913135529 0.3587929606437683</leafValues></_> |
|
| 897 |
+ <!-- tree 2 --> |
|
| 898 |
+ <_> |
|
| 899 |
+ <internalNodes> |
|
| 900 |
+ 0 -1 23 -285212705 -78450761 -656212031 -264050110 -27787425 |
|
| 901 |
+ -1334349961 -547662981 -135796924</internalNodes> |
|
| 902 |
+ <leafValues> |
|
| 903 |
+ -0.3731099069118500 0.4290455579757690</leafValues></_> |
|
| 904 |
+ <!-- tree 3 --> |
|
| 905 |
+ <_> |
|
| 906 |
+ <internalNodes> |
|
| 907 |
+ 0 -1 77 341863476 403702016 -550588417 1600194541 |
|
| 908 |
+ -1080690735 951127993 -1388580949 -1153717473</internalNodes> |
|
| 909 |
+ <leafValues> |
|
| 910 |
+ -0.3658909499645233 0.4556473195552826</leafValues></_> |
|
| 911 |
+ <!-- tree 4 --> |
|
| 912 |
+ <_> |
|
| 913 |
+ <internalNodes> |
|
| 914 |
+ 0 -1 22 -586880702 -204831512 -100644596 -39319550 |
|
| 915 |
+ -1191150794 705692513 457203315 -75806957</internalNodes> |
|
| 916 |
+ <leafValues> |
|
| 917 |
+ -0.5214384198188782 0.3221037387847900</leafValues></_> |
|
| 918 |
+ <!-- tree 5 --> |
|
| 919 |
+ <_> |
|
| 920 |
+ <internalNodes> |
|
| 921 |
+ 0 -1 72 -416546870 545911370 -673716192 -775559454 |
|
| 922 |
+ -264113598 139424 -183369982 -204474641</internalNodes> |
|
| 923 |
+ <leafValues> |
|
| 924 |
+ -0.4289036989212036 0.4004956185817719</leafValues></_> |
|
| 925 |
+ <!-- tree 6 --> |
|
| 926 |
+ <_> |
|
| 927 |
+ <internalNodes> |
|
| 928 |
+ 0 -1 50 -1026505020 -589692154 -1740499937 -1563770497 |
|
| 929 |
+ 1348491006 -60710713 -1109853489 -633909413</internalNodes> |
|
| 930 |
+ <leafValues> |
|
| 931 |
+ -0.4621542394161224 0.3832748532295227</leafValues></_> |
|
| 932 |
+ <!-- tree 7 --> |
|
| 933 |
+ <_> |
|
| 934 |
+ <internalNodes> |
|
| 935 |
+ 0 -1 108 -1448872304 -477895040 -1778390608 -772418127 |
|
| 936 |
+ -1789923416 -1612057181 -805306693 -1415842113</internalNodes> |
|
| 937 |
+ <leafValues> |
|
| 938 |
+ -0.3711548447608948 0.4612701535224915</leafValues></_> |
|
| 939 |
+ <!-- tree 8 --> |
|
| 940 |
+ <_> |
|
| 941 |
+ <internalNodes> |
|
| 942 |
+ 0 -1 92 407905424 -582449988 52654751 -1294472 -285103725 |
|
| 943 |
+ -74633006 1871559083 1057955850</internalNodes> |
|
| 944 |
+ <leafValues> |
|
| 945 |
+ -0.5180652141571045 0.3205870389938355</leafValues></_></weakClassifiers></_> |
|
| 946 |
+ <!-- stage 18 --> |
|
| 947 |
+ <_> |
|
| 948 |
+ <maxWeakCount>10</maxWeakCount> |
|
| 949 |
+ <stageThreshold>-0.5911940932273865</stageThreshold> |
|
| 950 |
+ <weakClassifiers> |
|
| 951 |
+ <!-- tree 0 --> |
|
| 952 |
+ <_> |
|
| 953 |
+ <internalNodes> |
|
| 954 |
+ 0 -1 81 4112 -1259563825 -846671428 -100902460 1838164148 |
|
| 955 |
+ -74153752 -90653988 -1074263896</internalNodes> |
|
| 956 |
+ <leafValues> |
|
| 957 |
+ -0.2592592537403107 0.5873016119003296</leafValues></_> |
|
| 958 |
+ <!-- tree 1 --> |
|
| 959 |
+ <_> |
|
| 960 |
+ <internalNodes> |
|
| 961 |
+ 0 -1 1 -285216785 -823206977 -1085589 -1081346 1207959293 |
|
| 962 |
+ 1157103471 2097133565 -2097169</internalNodes> |
|
| 963 |
+ <leafValues> |
|
| 964 |
+ -0.3801195919513702 0.4718827307224274</leafValues></_> |
|
| 965 |
+ <!-- tree 2 --> |
|
| 966 |
+ <_> |
|
| 967 |
+ <internalNodes> |
|
| 968 |
+ 0 -1 121 -12465 -536875169 2147478367 2130706303 -37765492 |
|
| 969 |
+ -866124467 -318782328 -1392509185</internalNodes> |
|
| 970 |
+ <leafValues> |
|
| 971 |
+ -0.3509117066860199 0.5094807147979736</leafValues></_> |
|
| 972 |
+ <!-- tree 3 --> |
|
| 973 |
+ <_> |
|
| 974 |
+ <internalNodes> |
|
| 975 |
+ 0 -1 38 2147449663 -20741 -16794757 1945873146 -16710 -1 |
|
| 976 |
+ -8406341 -67663041</internalNodes> |
|
| 977 |
+ <leafValues> |
|
| 978 |
+ -0.4068757295608521 0.4130136370658875</leafValues></_> |
|
| 979 |
+ <!-- tree 4 --> |
|
| 980 |
+ <_> |
|
| 981 |
+ <internalNodes> |
|
| 982 |
+ 0 -1 17 -155191713 866117231 1651407483 548272812 -479201468 |
|
| 983 |
+ -447742449 1354229504 -261884429</internalNodes> |
|
| 984 |
+ <leafValues> |
|
| 985 |
+ -0.4557141065597534 0.3539792001247406</leafValues></_> |
|
| 986 |
+ <!-- tree 5 --> |
|
| 987 |
+ <_> |
|
| 988 |
+ <internalNodes> |
|
| 989 |
+ 0 -1 100 -225319378 -251682065 -492783986 -792341777 |
|
| 990 |
+ -1287261695 1393643841 -11274182 -213909521</internalNodes> |
|
| 991 |
+ <leafValues> |
|
| 992 |
+ -0.4117803275585175 0.4118592441082001</leafValues></_> |
|
| 993 |
+ <!-- tree 6 --> |
|
| 994 |
+ <_> |
|
| 995 |
+ <internalNodes> |
|
| 996 |
+ 0 -1 63 -382220122 -2002072729 -51404800 -371201558 |
|
| 997 |
+ -923011069 -2135301457 -2066104743 -1042557441</internalNodes> |
|
| 998 |
+ <leafValues> |
|
| 999 |
+ -0.4008397758007050 0.4034757018089294</leafValues></_> |
|
| 1000 |
+ <!-- tree 7 --> |
|
| 1001 |
+ <_> |
|
| 1002 |
+ <internalNodes> |
|
| 1003 |
+ 0 -1 101 -627353764 -48295149 1581203952 -436258614 |
|
| 1004 |
+ -105268268 -1435893445 -638126888 -1061107126</internalNodes> |
|
| 1005 |
+ <leafValues> |
|
| 1006 |
+ -0.5694189667701721 0.2964762747287750</leafValues></_> |
|
| 1007 |
+ <!-- tree 8 --> |
|
| 1008 |
+ <_> |
|
| 1009 |
+ <internalNodes> |
|
| 1010 |
+ 0 -1 118 -8399181 1058107691 -621022752 -251003468 -12582915 |
|
| 1011 |
+ -574619739 -994397789 -1648362021</internalNodes> |
|
| 1012 |
+ <leafValues> |
|
| 1013 |
+ -0.3195341229438782 0.5294018983840942</leafValues></_> |
|
| 1014 |
+ <!-- tree 9 --> |
|
| 1015 |
+ <_> |
|
| 1016 |
+ <internalNodes> |
|
| 1017 |
+ 0 -1 92 -348343812 -1078389516 1717960437 364735981 |
|
| 1018 |
+ -1783841602 -4883137 -457572354 -1076950384</internalNodes> |
|
| 1019 |
+ <leafValues> |
|
| 1020 |
+ -0.3365339040756226 0.5067458748817444</leafValues></_></weakClassifiers></_> |
|
| 1021 |
+ <!-- stage 19 --> |
|
| 1022 |
+ <_> |
|
| 1023 |
+ <maxWeakCount>10</maxWeakCount> |
|
| 1024 |
+ <stageThreshold>-0.7612916231155396</stageThreshold> |
|
| 1025 |
+ <weakClassifiers> |
|
| 1026 |
+ <!-- tree 0 --> |
|
| 1027 |
+ <_> |
|
| 1028 |
+ <internalNodes> |
|
| 1029 |
+ 0 -1 10 -1976661318 -287957604 -1659497122 -782068 43591089 |
|
| 1030 |
+ -453637880 1435470000 -1077438561</internalNodes> |
|
| 1031 |
+ <leafValues> |
|
| 1032 |
+ -0.4204545319080353 0.5165745615959168</leafValues></_> |
|
| 1033 |
+ <!-- tree 1 --> |
|
| 1034 |
+ <_> |
|
| 1035 |
+ <internalNodes> |
|
| 1036 |
+ 0 -1 131 -67110925 14874979 -142633168 -1338923040 |
|
| 1037 |
+ 2046713291 -2067933195 1473503712 -789579837</internalNodes> |
|
| 1038 |
+ <leafValues> |
|
| 1039 |
+ -0.3762553930282593 0.4075302779674530</leafValues></_> |
|
| 1040 |
+ <!-- tree 2 --> |
|
| 1041 |
+ <_> |
|
| 1042 |
+ <internalNodes> |
|
| 1043 |
+ 0 -1 83 -272814301 -1577073 -1118685 -305156120 -1052289 |
|
| 1044 |
+ -1073813756 -538971154 -355523038</internalNodes> |
|
| 1045 |
+ <leafValues> |
|
| 1046 |
+ -0.4253497421741486 0.3728055357933044</leafValues></_> |
|
| 1047 |
+ <!-- tree 3 --> |
|
| 1048 |
+ <_> |
|
| 1049 |
+ <internalNodes> |
|
| 1050 |
+ 0 -1 135 -2233 -214486242 -538514758 573747007 -159390971 |
|
| 1051 |
+ 1994225489 -973738098 -203424005</internalNodes> |
|
| 1052 |
+ <leafValues> |
|
| 1053 |
+ -0.3601998090744019 0.4563256204128265</leafValues></_> |
|
| 1054 |
+ <!-- tree 4 --> |
|
| 1055 |
+ <_> |
|
| 1056 |
+ <internalNodes> |
|
| 1057 |
+ 0 -1 115 -261031688 -1330369299 -641860609 1029570301 |
|
| 1058 |
+ -1306461192 -1196149518 -1529767778 683139823</internalNodes> |
|
| 1059 |
+ <leafValues> |
|
| 1060 |
+ -0.4034293889999390 0.4160816967487335</leafValues></_> |
|
| 1061 |
+ <!-- tree 5 --> |
|
| 1062 |
+ <_> |
|
| 1063 |
+ <internalNodes> |
|
| 1064 |
+ 0 -1 64 -572993608 -34042628 -417865 -111109 -1433365268 |
|
| 1065 |
+ -19869715 -1920939864 -1279457063</internalNodes> |
|
| 1066 |
+ <leafValues> |
|
| 1067 |
+ -0.3620899617671967 0.4594142735004425</leafValues></_> |
|
| 1068 |
+ <!-- tree 6 --> |
|
| 1069 |
+ <_> |
|
| 1070 |
+ <internalNodes> |
|
| 1071 |
+ 0 -1 36 -626275097 -615256993 1651946018 805366393 |
|
| 1072 |
+ 2016559730 -430780849 -799868165 -16580645</internalNodes> |
|
| 1073 |
+ <leafValues> |
|
| 1074 |
+ -0.3903816640377045 0.4381459355354309</leafValues></_> |
|
| 1075 |
+ <!-- tree 7 --> |
|
| 1076 |
+ <_> |
|
| 1077 |
+ <internalNodes> |
|
| 1078 |
+ 0 -1 93 1354797300 -1090957603 1976418270 -1342502178 |
|
| 1079 |
+ -1851873892 -1194637077 -1153521668 -1108399474</internalNodes> |
|
| 1080 |
+ <leafValues> |
|
| 1081 |
+ -0.3591445386409760 0.4624078869819641</leafValues></_> |
|
| 1082 |
+ <!-- tree 8 --> |
|
| 1083 |
+ <_> |
|
| 1084 |
+ <internalNodes> |
|
| 1085 |
+ 0 -1 91 68157712 1211368313 -304759523 1063017136 798797750 |
|
| 1086 |
+ -275513546 648167355 -1145357350</internalNodes> |
|
| 1087 |
+ <leafValues> |
|
| 1088 |
+ -0.4297670423984528 0.4023293554782867</leafValues></_> |
|
| 1089 |
+ <!-- tree 9 --> |
|
| 1090 |
+ <_> |
|
| 1091 |
+ <internalNodes> |
|
| 1092 |
+ 0 -1 107 -546318240 -1628569602 -163577944 -537002306 |
|
| 1093 |
+ -545456389 -1325465645 -380446736 -1058473386</internalNodes> |
|
| 1094 |
+ <leafValues> |
|
| 1095 |
+ -0.5727006793022156 0.2995934784412384</leafValues></_></weakClassifiers></_></stages> |
|
| 1096 |
+ <features> |
|
| 1097 |
+ <_> |
|
| 1098 |
+ <rect> |
|
| 1099 |
+ 0 0 3 5</rect></_> |
|
| 1100 |
+ <_> |
|
| 1101 |
+ <rect> |
|
| 1102 |
+ 0 0 4 2</rect></_> |
|
| 1103 |
+ <_> |
|
| 1104 |
+ <rect> |
|
| 1105 |
+ 0 0 6 3</rect></_> |
|
| 1106 |
+ <_> |
|
| 1107 |
+ <rect> |
|
| 1108 |
+ 0 1 2 3</rect></_> |
|
| 1109 |
+ <_> |
|
| 1110 |
+ <rect> |
|
| 1111 |
+ 0 1 3 3</rect></_> |
|
| 1112 |
+ <_> |
|
| 1113 |
+ <rect> |
|
| 1114 |
+ 0 1 3 7</rect></_> |
|
| 1115 |
+ <_> |
|
| 1116 |
+ <rect> |
|
| 1117 |
+ 0 4 3 3</rect></_> |
|
| 1118 |
+ <_> |
|
| 1119 |
+ <rect> |
|
| 1120 |
+ 0 11 3 4</rect></_> |
|
| 1121 |
+ <_> |
|
| 1122 |
+ <rect> |
|
| 1123 |
+ 0 12 8 4</rect></_> |
|
| 1124 |
+ <_> |
|
| 1125 |
+ <rect> |
|
| 1126 |
+ 0 14 4 3</rect></_> |
|
| 1127 |
+ <_> |
|
| 1128 |
+ <rect> |
|
| 1129 |
+ 1 0 5 3</rect></_> |
|
| 1130 |
+ <_> |
|
| 1131 |
+ <rect> |
|
| 1132 |
+ 1 1 2 2</rect></_> |
|
| 1133 |
+ <_> |
|
| 1134 |
+ <rect> |
|
| 1135 |
+ 1 3 3 1</rect></_> |
|
| 1136 |
+ <_> |
|
| 1137 |
+ <rect> |
|
| 1138 |
+ 1 7 4 4</rect></_> |
|
| 1139 |
+ <_> |
|
| 1140 |
+ <rect> |
|
| 1141 |
+ 1 12 2 2</rect></_> |
|
| 1142 |
+ <_> |
|
| 1143 |
+ <rect> |
|
| 1144 |
+ 1 13 4 1</rect></_> |
|
| 1145 |
+ <_> |
|
| 1146 |
+ <rect> |
|
| 1147 |
+ 1 14 4 3</rect></_> |
|
| 1148 |
+ <_> |
|
| 1149 |
+ <rect> |
|
| 1150 |
+ 1 17 3 2</rect></_> |
|
| 1151 |
+ <_> |
|
| 1152 |
+ <rect> |
|
| 1153 |
+ 2 0 2 3</rect></_> |
|
| 1154 |
+ <_> |
|
| 1155 |
+ <rect> |
|
| 1156 |
+ 2 1 2 2</rect></_> |
|
| 1157 |
+ <_> |
|
| 1158 |
+ <rect> |
|
| 1159 |
+ 2 2 4 6</rect></_> |
|
| 1160 |
+ <_> |
|
| 1161 |
+ <rect> |
|
| 1162 |
+ 2 3 4 4</rect></_> |
|
| 1163 |
+ <_> |
|
| 1164 |
+ <rect> |
|
| 1165 |
+ 2 7 2 1</rect></_> |
|
| 1166 |
+ <_> |
|
| 1167 |
+ <rect> |
|
| 1168 |
+ 2 11 2 3</rect></_> |
|
| 1169 |
+ <_> |
|
| 1170 |
+ <rect> |
|
| 1171 |
+ 2 17 3 2</rect></_> |
|
| 1172 |
+ <_> |
|
| 1173 |
+ <rect> |
|
| 1174 |
+ 3 0 2 2</rect></_> |
|
| 1175 |
+ <_> |
|
| 1176 |
+ <rect> |
|
| 1177 |
+ 3 1 7 3</rect></_> |
|
| 1178 |
+ <_> |
|
| 1179 |
+ <rect> |
|
| 1180 |
+ 3 7 2 1</rect></_> |
|
| 1181 |
+ <_> |
|
| 1182 |
+ <rect> |
|
| 1183 |
+ 3 7 2 4</rect></_> |
|
| 1184 |
+ <_> |
|
| 1185 |
+ <rect> |
|
| 1186 |
+ 3 18 2 2</rect></_> |
|
| 1187 |
+ <_> |
|
| 1188 |
+ <rect> |
|
| 1189 |
+ 4 0 2 3</rect></_> |
|
| 1190 |
+ <_> |
|
| 1191 |
+ <rect> |
|
| 1192 |
+ 4 3 2 1</rect></_> |
|
| 1193 |
+ <_> |
|
| 1194 |
+ <rect> |
|
| 1195 |
+ 4 6 2 1</rect></_> |
|
| 1196 |
+ <_> |
|
| 1197 |
+ <rect> |
|
| 1198 |
+ 4 6 2 5</rect></_> |
|
| 1199 |
+ <_> |
|
| 1200 |
+ <rect> |
|
| 1201 |
+ 4 7 5 2</rect></_> |
|
| 1202 |
+ <_> |
|
| 1203 |
+ <rect> |
|
| 1204 |
+ 4 8 4 3</rect></_> |
|
| 1205 |
+ <_> |
|
| 1206 |
+ <rect> |
|
| 1207 |
+ 4 18 2 2</rect></_> |
|
| 1208 |
+ <_> |
|
| 1209 |
+ <rect> |
|
| 1210 |
+ 5 0 2 2</rect></_> |
|
| 1211 |
+ <_> |
|
| 1212 |
+ <rect> |
|
| 1213 |
+ 5 3 4 4</rect></_> |
|
| 1214 |
+ <_> |
|
| 1215 |
+ <rect> |
|
| 1216 |
+ 5 6 2 5</rect></_> |
|
| 1217 |
+ <_> |
|
| 1218 |
+ <rect> |
|
| 1219 |
+ 5 9 2 2</rect></_> |
|
| 1220 |
+ <_> |
|
| 1221 |
+ <rect> |
|
| 1222 |
+ 5 10 2 2</rect></_> |
|
| 1223 |
+ <_> |
|
| 1224 |
+ <rect> |
|
| 1225 |
+ 6 3 4 4</rect></_> |
|
| 1226 |
+ <_> |
|
| 1227 |
+ <rect> |
|
| 1228 |
+ 6 4 4 3</rect></_> |
|
| 1229 |
+ <_> |
|
| 1230 |
+ <rect> |
|
| 1231 |
+ 6 5 2 3</rect></_> |
|
| 1232 |
+ <_> |
|
| 1233 |
+ <rect> |
|
| 1234 |
+ 6 5 2 5</rect></_> |
|
| 1235 |
+ <_> |
|
| 1236 |
+ <rect> |
|
| 1237 |
+ 6 5 4 3</rect></_> |
|
| 1238 |
+ <_> |
|
| 1239 |
+ <rect> |
|
| 1240 |
+ 6 6 4 2</rect></_> |
|
| 1241 |
+ <_> |
|
| 1242 |
+ <rect> |
|
| 1243 |
+ 6 6 4 4</rect></_> |
|
| 1244 |
+ <_> |
|
| 1245 |
+ <rect> |
|
| 1246 |
+ 6 18 1 2</rect></_> |
|
| 1247 |
+ <_> |
|
| 1248 |
+ <rect> |
|
| 1249 |
+ 6 21 2 1</rect></_> |
|
| 1250 |
+ <_> |
|
| 1251 |
+ <rect> |
|
| 1252 |
+ 7 0 3 7</rect></_> |
|
| 1253 |
+ <_> |
|
| 1254 |
+ <rect> |
|
| 1255 |
+ 7 4 2 3</rect></_> |
|
| 1256 |
+ <_> |
|
| 1257 |
+ <rect> |
|
| 1258 |
+ 7 9 5 1</rect></_> |
|
| 1259 |
+ <_> |
|
| 1260 |
+ <rect> |
|
| 1261 |
+ 7 21 2 1</rect></_> |
|
| 1262 |
+ <_> |
|
| 1263 |
+ <rect> |
|
| 1264 |
+ 8 0 1 4</rect></_> |
|
| 1265 |
+ <_> |
|
| 1266 |
+ <rect> |
|
| 1267 |
+ 8 5 2 2</rect></_> |
|
| 1268 |
+ <_> |
|
| 1269 |
+ <rect> |
|
| 1270 |
+ 8 5 3 2</rect></_> |
|
| 1271 |
+ <_> |
|
| 1272 |
+ <rect> |
|
| 1273 |
+ 8 17 3 1</rect></_> |
|
| 1274 |
+ <_> |
|
| 1275 |
+ <rect> |
|
| 1276 |
+ 8 18 1 2</rect></_> |
|
| 1277 |
+ <_> |
|
| 1278 |
+ <rect> |
|
| 1279 |
+ 9 0 5 3</rect></_> |
|
| 1280 |
+ <_> |
|
| 1281 |
+ <rect> |
|
| 1282 |
+ 9 2 2 6</rect></_> |
|
| 1283 |
+ <_> |
|
| 1284 |
+ <rect> |
|
| 1285 |
+ 9 5 1 1</rect></_> |
|
| 1286 |
+ <_> |
|
| 1287 |
+ <rect> |
|
| 1288 |
+ 9 11 1 1</rect></_> |
|
| 1289 |
+ <_> |
|
| 1290 |
+ <rect> |
|
| 1291 |
+ 9 16 1 1</rect></_> |
|
| 1292 |
+ <_> |
|
| 1293 |
+ <rect> |
|
| 1294 |
+ 9 16 2 1</rect></_> |
|
| 1295 |
+ <_> |
|
| 1296 |
+ <rect> |
|
| 1297 |
+ 9 17 1 1</rect></_> |
|
| 1298 |
+ <_> |
|
| 1299 |
+ <rect> |
|
| 1300 |
+ 9 18 1 1</rect></_> |
|
| 1301 |
+ <_> |
|
| 1302 |
+ <rect> |
|
| 1303 |
+ 10 5 1 2</rect></_> |
|
| 1304 |
+ <_> |
|
| 1305 |
+ <rect> |
|
| 1306 |
+ 10 5 3 3</rect></_> |
|
| 1307 |
+ <_> |
|
| 1308 |
+ <rect> |
|
| 1309 |
+ 10 7 1 5</rect></_> |
|
| 1310 |
+ <_> |
|
| 1311 |
+ <rect> |
|
| 1312 |
+ 10 8 1 1</rect></_> |
|
| 1313 |
+ <_> |
|
| 1314 |
+ <rect> |
|
| 1315 |
+ 10 9 1 1</rect></_> |
|
| 1316 |
+ <_> |
|
| 1317 |
+ <rect> |
|
| 1318 |
+ 10 10 1 1</rect></_> |
|
| 1319 |
+ <_> |
|
| 1320 |
+ <rect> |
|
| 1321 |
+ 10 10 1 2</rect></_> |
|
| 1322 |
+ <_> |
|
| 1323 |
+ <rect> |
|
| 1324 |
+ 10 14 3 3</rect></_> |
|
| 1325 |
+ <_> |
|
| 1326 |
+ <rect> |
|
| 1327 |
+ 10 15 1 1</rect></_> |
|
| 1328 |
+ <_> |
|
| 1329 |
+ <rect> |
|
| 1330 |
+ 10 15 2 1</rect></_> |
|
| 1331 |
+ <_> |
|
| 1332 |
+ <rect> |
|
| 1333 |
+ 10 16 1 1</rect></_> |
|
| 1334 |
+ <_> |
|
| 1335 |
+ <rect> |
|
| 1336 |
+ 10 16 2 1</rect></_> |
|
| 1337 |
+ <_> |
|
| 1338 |
+ <rect> |
|
| 1339 |
+ 10 17 1 1</rect></_> |
|
| 1340 |
+ <_> |
|
| 1341 |
+ <rect> |
|
| 1342 |
+ 10 21 1 1</rect></_> |
|
| 1343 |
+ <_> |
|
| 1344 |
+ <rect> |
|
| 1345 |
+ 11 3 2 2</rect></_> |
|
| 1346 |
+ <_> |
|
| 1347 |
+ <rect> |
|
| 1348 |
+ 11 5 1 2</rect></_> |
|
| 1349 |
+ <_> |
|
| 1350 |
+ <rect> |
|
| 1351 |
+ 11 5 3 3</rect></_> |
|
| 1352 |
+ <_> |
|
| 1353 |
+ <rect> |
|
| 1354 |
+ 11 5 4 6</rect></_> |
|
| 1355 |
+ <_> |
|
| 1356 |
+ <rect> |
|
| 1357 |
+ 11 6 1 1</rect></_> |
|
| 1358 |
+ <_> |
|
| 1359 |
+ <rect> |
|
| 1360 |
+ 11 7 2 2</rect></_> |
|
| 1361 |
+ <_> |
|
| 1362 |
+ <rect> |
|
| 1363 |
+ 11 8 1 2</rect></_> |
|
| 1364 |
+ <_> |
|
| 1365 |
+ <rect> |
|
| 1366 |
+ 11 10 1 1</rect></_> |
|
| 1367 |
+ <_> |
|
| 1368 |
+ <rect> |
|
| 1369 |
+ 11 10 1 2</rect></_> |
|
| 1370 |
+ <_> |
|
| 1371 |
+ <rect> |
|
| 1372 |
+ 11 15 1 1</rect></_> |
|
| 1373 |
+ <_> |
|
| 1374 |
+ <rect> |
|
| 1375 |
+ 11 17 1 1</rect></_> |
|
| 1376 |
+ <_> |
|
| 1377 |
+ <rect> |
|
| 1378 |
+ 11 18 1 1</rect></_> |
|
| 1379 |
+ <_> |
|
| 1380 |
+ <rect> |
|
| 1381 |
+ 12 0 2 2</rect></_> |
|
| 1382 |
+ <_> |
|
| 1383 |
+ <rect> |
|
| 1384 |
+ 12 1 2 5</rect></_> |
|
| 1385 |
+ <_> |
|
| 1386 |
+ <rect> |
|
| 1387 |
+ 12 2 4 1</rect></_> |
|
| 1388 |
+ <_> |
|
| 1389 |
+ <rect> |
|
| 1390 |
+ 12 3 1 3</rect></_> |
|
| 1391 |
+ <_> |
|
| 1392 |
+ <rect> |
|
| 1393 |
+ 12 7 3 4</rect></_> |
|
| 1394 |
+ <_> |
|
| 1395 |
+ <rect> |
|
| 1396 |
+ 12 10 3 2</rect></_> |
|
| 1397 |
+ <_> |
|
| 1398 |
+ <rect> |
|
| 1399 |
+ 12 11 1 1</rect></_> |
|
| 1400 |
+ <_> |
|
| 1401 |
+ <rect> |
|
| 1402 |
+ 12 12 3 2</rect></_> |
|
| 1403 |
+ <_> |
|
| 1404 |
+ <rect> |
|
| 1405 |
+ 12 14 4 3</rect></_> |
|
| 1406 |
+ <_> |
|
| 1407 |
+ <rect> |
|
| 1408 |
+ 12 17 1 1</rect></_> |
|
| 1409 |
+ <_> |
|
| 1410 |
+ <rect> |
|
| 1411 |
+ 12 21 2 1</rect></_> |
|
| 1412 |
+ <_> |
|
| 1413 |
+ <rect> |
|
| 1414 |
+ 13 6 2 5</rect></_> |
|
| 1415 |
+ <_> |
|
| 1416 |
+ <rect> |
|
| 1417 |
+ 13 7 3 5</rect></_> |
|
| 1418 |
+ <_> |
|
| 1419 |
+ <rect> |
|
| 1420 |
+ 13 11 3 2</rect></_> |
|
| 1421 |
+ <_> |
|
| 1422 |
+ <rect> |
|
| 1423 |
+ 13 17 2 2</rect></_> |
|
| 1424 |
+ <_> |
|
| 1425 |
+ <rect> |
|
| 1426 |
+ 13 17 3 2</rect></_> |
|
| 1427 |
+ <_> |
|
| 1428 |
+ <rect> |
|
| 1429 |
+ 13 18 1 2</rect></_> |
|
| 1430 |
+ <_> |
|
| 1431 |
+ <rect> |
|
| 1432 |
+ 13 18 2 2</rect></_> |
|
| 1433 |
+ <_> |
|
| 1434 |
+ <rect> |
|
| 1435 |
+ 14 0 2 2</rect></_> |
|
| 1436 |
+ <_> |
|
| 1437 |
+ <rect> |
|
| 1438 |
+ 14 1 1 3</rect></_> |
|
| 1439 |
+ <_> |
|
| 1440 |
+ <rect> |
|
| 1441 |
+ 14 2 3 2</rect></_> |
|
| 1442 |
+ <_> |
|
| 1443 |
+ <rect> |
|
| 1444 |
+ 14 7 2 1</rect></_> |
|
| 1445 |
+ <_> |
|
| 1446 |
+ <rect> |
|
| 1447 |
+ 14 13 2 1</rect></_> |
|
| 1448 |
+ <_> |
|
| 1449 |
+ <rect> |
|
| 1450 |
+ 14 13 3 3</rect></_> |
|
| 1451 |
+ <_> |
|
| 1452 |
+ <rect> |
|
| 1453 |
+ 14 17 2 2</rect></_> |
|
| 1454 |
+ <_> |
|
| 1455 |
+ <rect> |
|
| 1456 |
+ 15 0 2 2</rect></_> |
|
| 1457 |
+ <_> |
|
| 1458 |
+ <rect> |
|
| 1459 |
+ 15 0 2 3</rect></_> |
|
| 1460 |
+ <_> |
|
| 1461 |
+ <rect> |
|
| 1462 |
+ 15 4 3 2</rect></_> |
|
| 1463 |
+ <_> |
|
| 1464 |
+ <rect> |
|
| 1465 |
+ 15 4 3 6</rect></_> |
|
| 1466 |
+ <_> |
|
| 1467 |
+ <rect> |
|
| 1468 |
+ 15 6 3 2</rect></_> |
|
| 1469 |
+ <_> |
|
| 1470 |
+ <rect> |
|
| 1471 |
+ 15 11 3 4</rect></_> |
|
| 1472 |
+ <_> |
|
| 1473 |
+ <rect> |
|
| 1474 |
+ 15 13 3 2</rect></_> |
|
| 1475 |
+ <_> |
|
| 1476 |
+ <rect> |
|
| 1477 |
+ 15 17 2 2</rect></_> |
|
| 1478 |
+ <_> |
|
| 1479 |
+ <rect> |
|
| 1480 |
+ 15 17 3 2</rect></_> |
|
| 1481 |
+ <_> |
|
| 1482 |
+ <rect> |
|
| 1483 |
+ 16 1 2 3</rect></_> |
|
| 1484 |
+ <_> |
|
| 1485 |
+ <rect> |
|
| 1486 |
+ 16 3 2 4</rect></_> |
|
| 1487 |
+ <_> |
|
| 1488 |
+ <rect> |
|
| 1489 |
+ 16 6 1 1</rect></_> |
|
| 1490 |
+ <_> |
|
| 1491 |
+ <rect> |
|
| 1492 |
+ 16 16 2 2</rect></_> |
|
| 1493 |
+ <_> |
|
| 1494 |
+ <rect> |
|
| 1495 |
+ 17 1 2 2</rect></_> |
|
| 1496 |
+ <_> |
|
| 1497 |
+ <rect> |
|
| 1498 |
+ 17 1 2 5</rect></_> |
|
| 1499 |
+ <_> |
|
| 1500 |
+ <rect> |
|
| 1501 |
+ 17 12 2 2</rect></_> |
|
| 1502 |
+ <_> |
|
| 1503 |
+ <rect> |
|
| 1504 |
+ 18 0 2 2</rect></_></features></cascade> |
|
| 1505 |
+</opencv_storage> |